Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T15:00:29.118Z Has data issue: false hasContentIssue false

Expansion of a multi-component laser-ablated plume

Published online by Cambridge University Press:  28 September 2011

A.M. Slowicka*
Affiliation:
Institute of Fundamental Technological Research, Pawinskiego 5B, 02-106 Warsaw, Poland
Z.A. Walenta
Affiliation:
Institute of Fundamental Technological Research, Pawinskiego 5B, 02-106 Warsaw, Poland
Z. Szymanski
Affiliation:
Institute of Fundamental Technological Research, Pawinskiego 5B, 02-106 Warsaw, Poland
*
Get access

Abstract

The expansion of a plume generated during laser ablation is studied with the Direct Simulation Monte Carlo method. The plume is a mixture of four disparate molecular mass components and expands in vacuum or into ambient gas. The time dependence of deposition rate is studied and the transition from an initial vacuum-like to a diffusion-like regime of expansion in ambient gas is shown. The lack of stoichiometry increases with the ratio of molecular masses of ablated particles and at disparate masses the stoichiometry is seriously affected. Ambient gas worsens the stoichiometry unless it supplies particles compensating the backward and sideward flows of plume constituents.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Urbassek, H.M., Sibold, D., Phys. Rev. Lett. 70, 1886 (1993)CrossRef
Itina, T.E., Marine, W., Autric, M., J. Appl. Phys. 82, 3536 (1997)CrossRef
Garrelie, E., Champeau, C., Catherinot, A., Appl. Phys. A 69, 45 (1999)CrossRef
Itina, T.E., Hermann, J., Delaporte, P., Sentis, M., Phys. Rev. E 66, 066406 (2002)CrossRef
Itina, T.E., Hermann, J., Delaporte, P., Sentis, M., Appl. Surf. Sci. 208–209, 27 (2003)CrossRef
Volkov, A.N., O’Connor, G.M., Glynn, T.J., Lukyanov, G.A., Appl. Phys. A 92, 927 (2008)CrossRef
Morozov, A.A., Geretovszky, Zs., Szörényi, T., J. Phys. D: Appl. Phys. 41, 015303 (2008)CrossRef
Schou, J., Appl. Surf. Sci. 255, 5191 (2009)CrossRef
Zeng, H., Lacefield, W.R., Mirov, S., Biomed. Mater. Res. 50, 248 (2000)3.0.CO;2-I>CrossRef
Solla, E.L., Borrajo, J.P., Gonzalez, P., Serra, J., Liste, S., Chiussi, S., Leon, B., Perez-Amor, B., Appl. Surf. Sci. 248, 360 (2005)CrossRef
Kim, H., Camata, R.P., Lee, S., Rohrer, G.D., Rollett, A.D., Vohra, Y.K., Acta Mater. 55, 131 (2007)CrossRef
Koch, C.F., Johnson, S., Kumar, D., Jelinek, M., Chrisey, D.B., Doraiswamy, A., Jin, C., Narayan, R.J., Mihailescu, I.N., Mater. Sci. Eng. C 27, 484 (2007)CrossRef
Nelea, V., Mihailescu, I.M., Jelinek, M., in Pulsed Laser Application of Thin Films, edited by Eason, R. (Wiley, Hoboken, 2007), pp. 421460Google Scholar
Ytrehus, T., in Rarefied Gas Dynamics, edited by Potter, J.L. (Academic, New York, 1977), pp. 11971212Google Scholar
Knight, C.J., AIAA J. 17, 519 (1979)CrossRef
Jedynski, M., Hoffman, J., Mroz, W., Szymanski, Z., Appl. Surf. Sci. 255, 2230 (2008)CrossRef
Arias, J.L., Mayor, M.B., Pou, J., Leon, B., Perez-Amor, M., Appl. Surf. Sci. 208–209, 57 (2003)CrossRef
Bird, G.A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994)Google Scholar
Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids (Clarendon, Oxford, 2002)Google Scholar
Yoo, S., Zeng, X.C., J. Chem Phys. 119, 9518 (2002)CrossRef
Murphy, A.B., Arundell, C.J., Plasma Chem. Plasma Process. 14, 451 (1994)CrossRef
Stallcop, J.R., Levin, E., Partridge, H., J. Thermophys. Heat Transf. 12, 514 (1998)CrossRef
Crifo, J.R., Astron. Astrophys. 223, 365 (1989)
Belotserkovskii, O.M., Yanitskii, V.E., Vychisl, Zh., Mat. Mat. Fiz. 15, 1553 (1975)[in Russian]
Maksyutenko, P., Rizzo, T.R., Boyarkin, O.V., J. Chem. Phys. 125, 181101 (2006)CrossRef
Serra, P., Morenza, J.L., Appl. Surf. Sci. 127–129, 662 (1998)CrossRef
Anisimov, S.I., Bäuerle, D., Luk’yanchuk, B.S., Phys. Rev. B 48, 12076 (1993)CrossRef
Amoruso, S., Toftmann, B., Schou, J., Appl. Surf. Sci. 248, 323 (2005)CrossRef
Nelea, V., Ristoscu, C., Chiritescu, C., Ghica, C., Mihailescu, I.M., Pelletier, H., Mille, P., Cornet, A., Appl. Surf. Sci. 168, 127 (2000)CrossRef
Jedynski, M., Hoffman, J., Moscicki, T., Mroz, W., Burdynska, S., Diduszko, R., Kolodziejczak, P., Szymanski, Z., Mater. Sci.-Poland 28, 693 (2010)
Serra, P., Fernandez-Pradas, J.M., Navarro, J., Morenza, J.L., Appl. Phys. A 69, S183 (1999)CrossRef
Serra, P., Morenza, J.L., Appl. Phys. A 67, 289 (1998)CrossRef
Sedov, L.I., Similarity and Dimensional Methods in Mechanics (Mir Publishers, Moscow, 1982)Google Scholar
Zeldovich, Ya.B., Raizer, Yu.P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966)Google Scholar