Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:52:17.413Z Has data issue: false hasContentIssue false

Exfoliation of Mo6Sx I9-x nanowires in common solvents

Published online by Cambridge University Press:  31 January 2007

V. Nicolosi
Affiliation:
Department of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
D. N. McCarthy
Affiliation:
Department of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
D. Vengust
Affiliation:
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
D. Mihailovic
Affiliation:
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia Mo6, Teslova 30, 1000 Ljubljana, Slovenia
W. J. Blau
Affiliation:
Department of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
J. N. Coleman*
Affiliation:
Department of Physics, University of Dublin, Trinity College, Dublin 2, Ireland
Get access

Abstract

We have demonstrated debundling of molydenym-sulphur-iodine nanowires simply by diluting nanowire dispersions in isopropanol. Using atomic-force-microscopy we observe the bundle diameter distribution to decrease dramatically with concentration. Detailed analysis of the data suggests the presence of an equilibrium bundle number density. The population of individual nanowires increases with decreasing concentration until almost half of all dispersed objects are individual nanowires at a concentration of 4 × 10−3 mg/ml. The partial concentration of individual nanowires peaks at a concentration of ~7 × 10−3 mg/ml. This debundling also occurs spontaneously without the input of sonic energy, suggesting thermodynamic solubility. The absorbance of the nanowire dispersions, measured in the visible region increases linearly with concentration indicating a concentration independent absorption coefficient. However, for the infra-red feature that has been associated with band edge transitions, the absorption coefficient increases with increasing concentration for both stoichiometries. This suggests that this transition may be quenched by the inter-nanowire interactions associated with bundling. Finally, nanowire re-aggregation can be induced by the addition of small quantities of non-solvents.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Iijima, S., Nature 354, 56 (1991) CrossRef
Cadek, M., Coleman, J.N., Ryan, K.P. et al., Nano Letters 4, 353 (2004) CrossRef
Coleman, J.N., Khan, U., Blau, W.J. et al., Carbon 44, 1624 (2006) CrossRef
Dalton, A.B., Collins, S., Munoz, E. et al., Nature 423, 703 (2003) CrossRef
Zaric, S., Ostojic, G.N., Kono, J. et al., Science 304, 1129 (2004) CrossRef
Furtado, C.A., Kim, U.J., Gutierrez, H.R. et al., J. Am. Chem. Soc. 126, 6095 (2004) CrossRef
Giordani, S., Bergin, S.D., Nicolosi, V. et al., J. Phys. Chem. B 110, 15708 (2006) CrossRef
Landi, B.J., Ruf, H.J., Worman, J.J. et al., J. Phys. Chem. B 108, 17089 (2004) CrossRef
O'Connell, M.J., Bachilo, S.M., Huffman, C.B. et al., Science 297, 593 (2002) CrossRef
Coleman, J.N., Fleming, A., Maier, S. et al., J. Phys. Chem. B 108, 3446 (2004) CrossRef
Murphy, R., Coleman, J.N., Cadek, M. et al., J. Phys. Chem. B 106, 3087 (2002) CrossRef
Blake, R., Gun'ko, Y.K., Coleman, J. et al., J. Am. Chem. Soc. 126, 10226 (2004) CrossRef
Remskar, M., Mrzel, A., Skraba, Z. et al., Science 292, 479 (2001) CrossRef
Tenne, R., Margulis, L., Genut, M. et al., Nature 360, 444 (1992) CrossRef
Vrbanic, D., Remskar, M., Jesih, A. et al., Nanotechnology 15, 635 (2004) CrossRef
Nicolosi, V., Vrbanic, D., Mrzel, A. et al., J. Phys. Chem. B 109, 7124 (2005) CrossRef
Nicolosi, V., Vrbanic, D., Mrzel, A. et al., Chem. Phys. Lett. 401, 13 (2005) CrossRef
Kis, A., Mihailovic, D., Remskar, M. et al., Adv. Mater. 15, 733 (2003) CrossRef
Salvetat, J.P., Briggs, G.A.D., Bonard, J.M. et al., Phys. Rev. Lett. 82, 944 (1999) CrossRef
V. Nicolosi, P. Nellist, S. Sanvito et al., Adv. Mater. (in press)
D.N. McCarthy, V. Nicolosi, D. Vengust et al., J. Appl. Phys. (in press)
Meden, A., Kodre, A., Padeznik Gomilsek, J. et al., Nanotechnology 16, 1578 (2005) CrossRef
V. Nicolosi, P. Nellist, S. Sanvito et al., submitted to Advanced Materials
A.M. Donald, A.H. Windle, Liquid Crystalline Polymers (Cambridge University Press, Cambridge, 1992)
J.H. Hildebrand, J.M. Prausnitz, R.L. Scott, Regular and related solutions (Van Nostrand Reinhold Company, New York, 1970)
S.F. Sun, Physical Chemistry of macromolecules (Wiley, New York, 2004)
J. Brandrup, E.H. Immergut, Polymer handbook (John Wiley & Sons, 1989)