Published online by Cambridge University Press: 15 February 2013
A theoretical analysis of the line broadening of localized atomic transitions in liquid helium is presented. It is shown that accurate information can be derived on the long-range part of the He*-He interaction as well as on the local structure near the He* emitters. The analysis confirms that in corona discharges in liquid helium the emitting He* atoms reside in cavities and that for known He*-He interaction the size of the cavities can be deduced from the line profile. The He*-He interaction was calculated using the full configuration interaction (CI) method as implemented in the Molpro package. The widths of atomic lines due to fluorescent transitions between different excited states of helium atoms were calculated as a function of external pressure in the range from 0.1 and 3.5 MPa using the static approximation method, and the input from the results of the CI calculation and cavity diameters calculated using the bubble model. The calculated widths showed excellent agreement with experimental data of liquid helium excited by corona discharges. A second, analytical analysis using a power function to represent the He*-He interaction showed qualitative agreement with the experimental data.
Contribution to the Topical Issue “13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)”, Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.