Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T22:48:15.531Z Has data issue: false hasContentIssue false

Evolution of photoluminescence life-times distribution in Si-QD/SiO2 multilayer films

Published online by Cambridge University Press:  11 June 2013

Xinzhan Wang
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Yumei Liu
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Huina Feng
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Wanlei Dai
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Yanmei Xu
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Wei Yu*
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Guangsheng Fu*
Affiliation:
College of Physics Science and Technology, Hebei University, Baoding 071002, P.R. China
Get access

Abstract

Si-rich oxide/SiO2 multilayer films with different N2O flow rates have been deposited by plasma enhanced chemical vapor deposition technique, and Si quantum dot (Si-QD)/SiO2 multilayer films are obtained by 1100 °C annealing. Steady photoluminescence (PL) spectra show that the main optical emission mechanism changes from quantum confinement effect of Si-QDs to interface defect states with increasing the flow rate of N2O. Curve fittings of time-resolved PL spectra show that two log-normal decay time distribution bands are obtained, and both the most frequent life-times decrease with increasing the flow rate of N2O, while increase with the red shift of detecting wavelength. Analyses indicate that defect states density and size distribution of Si-QDs strongly influence the PL decay properties.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cullis, A.G., Canham, L.T., Nature 353, 335 (1991)CrossRef
Hao, X.J., Cho, E.C., Flynn, C., Shen, Y.S., Park, S.C., Conibeer, G., Green, M.A., Sol. Energy Mater. Sol. Cells 93, 273 (2009)CrossRef
Lin, G.R., Lin, C.J., Lin, C.K., Opt. Express 15, 2555 (2007)CrossRef
Rui, Y., Li, S., Xu, J., Song, C., Jiang, X., Li, W., Chen, K., Wang, Q., Zuo, Y., J. Appl. Phys. 110, 064322 (2011)CrossRef
Wei, L.S., Chen, D.H., Small 5, 72 (2009)PubMed
Zacharias, M., Heitmann, J., Scholz, R., Kahler, U., Schmidt, M., Blasing, J., Appl. Phys. Lett. 80, 661 (2002)CrossRef
Kanemitsu, Y., Okamoto, S., Otobe, M., Oda, S., Phys. Rev. B 55, R7375 (1997)CrossRef
Lin, G.R., Lin, C.J., Lin, C.K., Chou, L.J., Chueh, Y.L., J. Appl. Phys. 97, 094306 (2005)CrossRef
Qin, G.G., Li, Y.J., Phys. Rev. B 68, 85309 (2003)CrossRef
Hao, X.J., Podhorodecki, A.P., Shen, Y.S., Zatryb, G., Misiewicz, J., Green, M.A., Nanotechnology 20, 485703 (2009)CrossRef
Lin, Y.H., Wu, C.L., Pai, Y.H., Lin, G.R., Opt. Express 19, 6564 (2011)
Wu, C.L., Lin, Y.H., Lin, G.R., IEEE J. Sel. Top. Quantum Electron. 18, 1643 (2012)
Klein, T.M., Anderson, T.M., Chowdhury, A.I., Parsons, G.N., J. Vac. Sci. Technol. A 17, 108 (1999)CrossRef
Iacona, F., Franzo, G., Spinella, C., J. Appl. Phys. 87, 1295 (2000)CrossRef
Pai, P.G., Chao, S.S., Takagi, Y., Lucovsky, G., J. Vac. Sci. Technol. A 4, 689 (1986)CrossRef
Giuseppe, F., Santo, G., Pennisi, A.R., Carla, F., J. Appl. Phys. 109, 074311 (2011)
Chang, G.R., Ma, F., Ma, D.Y., Xu, K.W., Nanotechnology 21, 465605 (2010)CrossRef
Allan, G., Delerue, C., Lannoo, M., Phys. Rev. Lett. 78, 3161 (1997)CrossRef
Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O.I., Van Tendeloo, G., Moshchalkov, V.V., Nat. Nanotechnol. 3, 174 (2008)CrossRef
Bujdák, J., Czímerová, A., Arbeloa, F.L., J. Coll. Interf. Sci. 364, 497 (2011)CrossRef
Okamoto, K., Vyawahare, S., Scherer, A., J. Opt. Soc. Am. B 23, 1674 (2006)CrossRef
de Boer, W.D.A.M., Timmerman, D., Dohnalova, K., Yassievich, I.N., Zhang, H., Buma, W.J., Gregorkiewicz, T., Nat. Nanotechnol. 5, 878 (2010)CrossRef
Zatryb, G., Podhorodecki, A., Hao, X.J., Misiewicz, J., Shen, Y.S., Green, M.A., Opt. Express 18, 22004 (2010)CrossRef
Borrero-González, L.J., Nunes, L.A.O., Andreeta, M.R.B., Wojcik, J., Mascher, P., Pusep, Y.A., Comedi, D., Guimarães, F.E.G., J. Appl. Phys. 108, 013105 (2010)CrossRef