Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:45:21.812Z Has data issue: false hasContentIssue false

Evolution of high aspect ratio and nano-grass structuresusing a modified low plasma density reactive ion etching

Published online by Cambridge University Press:  21 July 2011

M. Mehran
Affiliation:
Nano-Electronic Center of Excellence, Nano-Electronic and Thin Film Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, Iran
Z. Kolahdouz
Affiliation:
Nano-Electronic Center of Excellence, Nano-Electronic and Thin Film Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, Iran
Z. Sanaee
Affiliation:
Nano-Electronic Center of Excellence, Nano-Electronic and Thin Film Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, Iran
S. Azimi
Affiliation:
Nano-Electronic Center of Excellence, Nano-Electronic and Thin Film Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, Iran
S. Mohajerzadeh*
Affiliation:
Nano-Electronic Center of Excellence, Nano-Electronic and Thin Film Lab, School of Electrical and Computer Eng, University of Tehran, Tehran, Iran
*
Get access

Abstract

We report a modified deep reactive ion etching method to realize high aspect ratio features and nano-grasses on silicon substrates. This etching technique uses sequential etching and passivation sub-cycles and it is based on three gases of H2, O2 and SF6 in the presence of rf-plasma. By adjusting the etching parameters such as the flows of various gases, the plasma power and duration of each cycle, the process can be controlled to obtain high aspect ratio vertical structures on silicon substrates. Features with aspect ratios of the order of 30–50 and heights of the order of 25–30 μm are obtained. On the other hand, one can program the etching parameters to achieve grass-full structures in desired places and with pre-designed patterns. The formation of nano-grass on silicon surface, improves its wetability with water and oil spills. This property has been used to entrap carbon nanotubes onto nano-structured surfaces in desired places.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Engelhart, P., Harder, N.P., Grischke, R., Merkle, A., Meyer, R., Brendel, R., Prog. Photovolt.: Res. Appl. 15, 237 (2007) CrossRef
Zhu, J.T., Shen, Y.F., Li, W., Chen, X., Yin, G., Chen, D.Y., Zhao, L., J. Appl. Surf. Sci. 252, 2752 (2006) CrossRef
Starovoitov, A., Bayliss, S., J. Porous Mater. 7, 367 (2000) CrossRef
Juodkazis, S., Nishi, Y., Misawa, H., Mizeikis, V., Schecker, O., Waitz, R., Leiderer, P., Scheer, E., Opt. Express 17, 15308 (2009) CrossRef
P. Path, G. Wileke, E. Bucher, J. Szlufcic, R.M. Murti, K. De Clercq, J. Nijs, R. Mertens, in Proc. of 24th IEEE Photovoltaic Specialist Conf. Waikoloa, Hawaii, 1994
Won, C.W., Nersisyan, H.H., Shin, C.Y., Lee, J.H., J. Micropor. Mesopor. Mater. 126, 166 (2009) CrossRef
Betty, C.A., J. Biosens. Bioelectron. 25, 338 (2009) CrossRef
Tsujino, K., Matsumura, M., Nishimoto, Y., J. Sol. Energy Mater. Sol. Cells 90, 100 (2006) CrossRef
K. Murakami, Y. Wakabayashi, K. Minami, M. Esashi, in Proc. of IEEE MEMS Conf., Florida, USA, 1993
Givant, A., Shappir, J., Sa'ar, A., Phys. Stat. Sol. A 182, 419 (2000) 3.0.CO;2-K>CrossRef
Yae, S., Kobayashi, T., Kawagishi, T., Fukumuro, N., Matsuda, H., Energy 80, 701 (2006)
Lee, S., Soohong, E. Lee, Eunjoo, J. Nanosci. Nanotechnol. 7, 3713 (2007) CrossRef
Gonzalez-Diaaz, B., Guerrero-Lemus, R., Marrero, N., Hernandez-Rodriaguez, C., Ben-Hander, F.A., Martianez-Duart, J.M., J. Phys. D: Appl. Phys. 39, 631 (2006) CrossRef
Dussart, R., Mellhaoui, X., Tillocher, T., Lefaucheux, P., Volatier, M., Socquet-Clerc, C., Brault, P., Ranson, P., J. Phys. D: Appl. Phys. 38, 3395 (2005) CrossRef
Yoo, J., Kim, K., Thamilselvan, M., Lakshminarayn, N., Kim, Y.K., Lee, J., Yoo, K.J., Yi, J., J. Phys. D: Appl. Phys. 41, 125205 (2008) CrossRef
Yang, C., Ryu, S., Lim, Y., Yoo, W.J., J. NANO: Brief Reports and Reviews 3, 169 (2008) CrossRef
Fu, Y.Q., Colli, A., Fasoli, A., Luo, J.K., Flewitt, A.J., Ferrari, A.C., Milne, W.I., J. Vac. Sci. Technol. B 27, 1520 (2009) CrossRef
Stubenrauch, M., Fischer, M., Kremin, C., Stoebenau, S., Albrecht, A., Nagel, O., J. Micromech. Microeng. 16, 82 (2006) CrossRef
Amirov, I., Shumilov, A.S., J. High Energy Chem. 42, 399 (2008) CrossRef
Sainiemi, L., Keskinen, H., Aromaa, M., Luosujarvi, L., Grigoras, K., Kotiaho, T., Makel, J.M., Franssila, S., J. Nanotechnol. 18, 505303 (2007) CrossRef
Jansen, H., de Boer, M.J., Legtenberg, R., Elwenspoek, M., J. Micromech. Microeng. 5, 120 (1995) CrossRef
Zehfroosh, N., Shahmohamadi, M., Mohajerzadeh, S., IEEE Electron Dev. Lett. 31, 1056 (2010) CrossRef
Mehran, M., Mohajerzadeh, S., Sanaee, Z., Abdi, Y., J. Appl. Phys. Lett. 96, 203101 (2010) CrossRef
de Boer, M.J., Gardeniers, J.G.E., Jansen, H.V., Smulders, E., Gilde, M.-J., Roelofs, G., Sasserath, J.N., Elwenspoek, M., J. Microelectromech. Syst. 11, 385 (2002) CrossRef
F. Laermer, A. Schilp, US Patent 5 501 893, Mar. 26 (1996)
Jansen, H.V., de Boer, M.J., Unnikrishnan, S., Louwerse, M.C., Elwenspoek, M.C., J. Micromech. Microeng. 19, 33001 (2009) CrossRef
Jansen, H.V., de Boer, M.J., Ma, K., Gironès, M., Unnikrishnan, S., Louwerse, M.C., Elwenspoek, M.C., J. Micromech. Microeng. 20, 075027 (2010) CrossRef
R.J. Belen, S. Gomez, M. Kiehlbauch, D. Cooperberg, J. Vac. Sci. Technol. A 23 (2005)
Wu, B., Kumar, A., Pamarthy, S., J. Appl. Phys. 108, 051101 (2010) CrossRef
Sammak, A., Azimi, S., Khademhoseini, B., Izadi, N., Mohajerzadeh, S., IEEE JMEMS 16, 912 (2007)
Hart, A.J., Boskovic, B.O., Chuang, A.T.H., Golovko, V.B., Robertson, J., Johnson, B.F.G., Slocum, A.H., J. Nanotechnol. 17, 1397 (2006) CrossRef