Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T19:52:26.061Z Has data issue: false hasContentIssue false

Electrical transport properties of thermally deposited thin films of (E) [α(2,5Dimethyl furyl)Ethylidene] (Dicyclopropyl Methylene) 2,5 furadione

Published online by Cambridge University Press:  19 January 2004

M. M. El-Nahass
Affiliation:
Faculty of Education, Ain Shams University, 11757 Roxy, Cairo, Egypt
H. M. Zeyada*
Affiliation:
Department of physics, Faculty of Science at Damietta, 34517 New Damietta, Egypt
A. A. Hendi
Affiliation:
Girl's College of Education in Jeddah, 9027 Jeddah, Saudi Arabia
Get access

Abstract

The influence of environmental conditions “film thickness and measurements in both under vacuum and in air” on dark electrical resistivity of (E) [α(2,5Dimethyl furyl) Ethylidene] (Dicyclopropyl Methylene) 2,5 furadione thin films were investigated. It was found that electrical resistivity decreases exponentially with increasing film thickness and it is higher in those films measured under vacuum than those measured in air. The parameters and mechanisms of conduction in P-DCPF/n-Si heterojunction diode has been evaluated. For temperatures that is less than 351 K, the conduction mechanism is Schottky emission with thermal activation energy of 0.32 eV. In the temperature range “352−400 K”, the predominant conduction mechanism is space charge limited current with thermal activation energy of 0.95 ± 0.02 eV. The conduction mechanism in reverse bias direction is generation-recombination with activation energy of 0.57 ± 0.02 eV. The photovoltaic properties of P-DCPF/n-Si heterojunction diode were evaluated. The obtained experimental efficiency of constructed solar cell is 1.27%.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kogelnik, H., Bell Syst. Tech. J. 48, 2909 (1968) CrossRef
Hammer, J.M., Appl. Phys. Lett. 13, 318 (1986) CrossRef
Y. Yokoyama, T. Goto, M. Yokoyama, Y. Kurita, Chem. Lett. 1049 (1988)
Y. Yoshioka, T. Tanaka, M. Sawade, M. Irie, Chem. Lett. 19 (1989)
Heller, H.G., Spec. Publ. R. Soc. Chem. Fine Chem. Electron Ind. 60, 120 (1986)
Bennion, I., Hallam, A.G., Stewart, W.J., Radio Electron. Eng. 53, 313 (1983) CrossRef
Y. Kurita, Y. Yokoyama, T. Twai, N. Kera, I. Hitomi, Chem. Lett. 263 (1990)
Liang, Y., Dvornikov, A.S., Rentzepis, P.M., J. Photochem. Photobiol. A: Chemistry 146, 83 (2001) CrossRef
Kurita, S., Kashiwogi, A., Kurita, Y., Miyasoka, H., Matage, N., Chem. Phys. Lett. 171, 553 (1990) CrossRef
A.M. Asiri, J. Chem. Res.(s) 302 (1997)
Asiri, A.M., J. Photochem. Photobiol. A: Chemistry 146, 133 (2001) CrossRef
Asiri, A.M., Tetrahedr. Lett. 43, 6815 (2000) CrossRef
Ambily, S., Menon, C.S., Thin Solid Films 347, 284 (1999) CrossRef
Metwally, H.S., Physica B 292, 213 (2000) CrossRef
N.F. Mott, Conduction in Non-Crystalline Materials (Clarendon Press, Oxford, 1987), p. 62
F. Gutmann, L.E. Lyons, Organic Semiconductors (John Wiley and Sons, Inc., New York, 1967), F. Gutmann, H. Keyzer, L.E. Lyons, Organic Semiconductors parts A (1981) and parts B (1983)
S.M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New York, 1969)
Darwish, S., Riad, A.S., Soliman, H.S., Semicond. Sci. Technol. 11, 96 (1996) CrossRef
Ashoke, S., Pande, K.P., Solar Cells 14, 61 (1985) CrossRef
Darwish, S., Soliman, H.S., Riad, A.S., Thin Solid Films 259, 248 (1995) CrossRef
Hor, A.M., Loutfy, R.O., Hsiao, C.K., J. Appl. Phys. Lett. 42, 165 (1983) CrossRef
Cong Neuyen, H., Sence, C., Chartier, P., Sol. Energy Mater. Solar Cells 30, 127 (1993) CrossRef
Riad, A.D., El-shabasy, M., Abdel-Latif, R.M., Thin Solid Films 235, 222 (1993) CrossRef
Thompson, W.G., Anderson, R.L., Solid State Electron. 21, 03 (1978) CrossRef
Riad, A.S., Khalil, S.M., Darwish, S., Thin Solid Films 249, 219 (1994) CrossRef
A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cells (John Wiley and Sons, New York, 1998)
Rostalski, J., Meissner, D., Sol. Energy Mater. Sol. Cells 61, 87 (2000) CrossRef