Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:04:02.165Z Has data issue: false hasContentIssue false

Electrical study of DC positive corona discharge in dry and humid air containing carbon dioxide

Published online by Cambridge University Press:  16 July 2003

S. Lachaud
Affiliation:
Laboratoire d'Électronique des Gaz et des Plasmas, Université de Pau et des Pays de l'Adour, 64000 Pau, France
J. F. Loiseau*
Affiliation:
Laboratoire d'Électronique des Gaz et des Plasmas, Université de Pau et des Pays de l'Adour, 64000 Pau, France
Get access

Abstract

As most part of the industrial effluents contain carbon dioxide and water vapour, it is interesting to study from an electric point of view ‘basic’ gas mixtures including air and various amounts of these gases, in order to precise how the corona discharge inception takes place in such mixtures. In a DC point-to-plane reactor, distinct parameters are varied, such as discharge current, partial pressure of CO2, and relative humidity. Gap voltage and streamer frequency are experimentally measured as functions of the discharge current. Current waveforms are recorded in various gas mixtures and electrical conditions. DC and impulsional current components, as well as streamer frequency are also plotted as functions of the CO2 partial pressure for dry and water saturated mixtures. For dry or wet mixtures, 5% CO2 in volume appears to be the proportion allowing the establishment of a stable corona discharge with the lowest energy cost.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Popescu, J.M. Blanchard, J. Carré, Analyse et traitement physico-chimique des rejets atmosphériques industriels (Paris: Lavoisier/Tec & Doc, 1998)
G. Larroche, M. Orfeuil, Les Plasmas dans l'Industrie (Avon (France): Electra/Dopee & Paris: Lavoisier, 1991)
B.M. Penetrante, S.E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control, NATO ASI Series G (Berlin: Springer-Verlag, 1993), Vol. 34
E.M. Van Veldhuizen, Electrical discharges for environmental purposes - Fundamentals and applications (New-York: Nova Science Publishers, Inc., 2000)
H. Raether, Electron avalanches and breakdown in gases (London: Butterworth, 1964)
L.B. Loeb, Electrical coronas (Berkeley: University of California Press, 1965)
E. Nasser, Fundamentals of gaseous ionization and plasma electronic (New-York: Wiley-Interscience, 1971)
Yu.P. Raizer, Gas Discharge Physics (Berlin: Springer-Verlag, 1991)
B. Held, Proc.11th Int. Conf. on Gas Discharges and their Applications, Tokyo (Japan), 1995, Vol. II, pp. 514-526
A.E. Ercilbengoa, Étude expérimentale de régimes de décharge continue positive dans l'azote et l'air pour différentes pressions, Doctorate Thesis, Université de Pau et des Pays de l'Adour (France), 1999
Lapeyre, R.M., Peyrous, R., Environ. Technol. Lett. 2, 29 (1981) CrossRef
Held, B., Peyrous, R., Czech. J. Phys. 49, 301 (1999) CrossRef
S. Lachaud, Décharge pointe-pan dans les mélanges gazeux correspondant aux effluents industriels : étude électrique et physico-chimique, application à la destruction du dioxyde d'azote, Doctorate Thesis, Université de Pau et des Pays de l'Adour (France), 2002
Ercilbengoa, A.E., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 33, 2425 (2000) CrossRef
Ercilbengoa, A.E., Spyrou, N., Loiseau, J.F., J. Phys. D: Appl. Phys. 34, 584 (2001) CrossRef
Baricos, J., Dupuy, J., Peyrous, R., Schreiber, G., J. Phys. D: Appl. Phys. 11, L187 (1978) CrossRef
Loiseau, J.F., Batina, J., Noël, F., Peyrous, R., J. Phys. D: Appl. Phys. 35, 1020 (2002) CrossRef
R.S. Sigmond, Corona Discharges in Electrical Breakdown in Gases, edited by J.M. Meek, J.D. Craggs (New-York: John Wiley and Sons, 1978), pp. 319-384
M. Goldmanand, A. Goldman, Corona Discharges in Gaseous Electronics, edited by M.N. Hirsch, H.J. Oskam (New-York: Academic Press, 1978), Vol. II, pp. 219-290
J.F. Loiseau, F. Grangé, N. Spyrou, N. Soulem, B. Held, Proc.11th Int. Conf. on Gas Discharges and their Applications, Tokyo (Japan), 1995, Vol. II, pp. 492-495
Grangé, F., Soulem, N., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 28, 1619 (1995) CrossRef
F. Grangé, J.F. Loiseau, N. Spyrou, Proc. 5th Int. Sympos. on High Pressure Low Temperature Plasma Chemistry, HAKONE V, Milovy (Czech Republic), 1996, pp. 205-209
Aleksandrov, N.L., Bazelyan, E.M., Gorunov, A.Yu., Kochetov, I.V., J. Phys. D: Appl. Phys. 32, 2636 (1999) CrossRef
Aleksandrov, N.L., Bazelyan, E.M., Novitskii, G.A., J. Phys. D: Appl. Phys. 34, 1374 (2001) CrossRef
van Veldhuizen, F.M., Rutgers, W.R., J. Phys. D: Appl. Phys. 35, 2169 (2002) CrossRef
Soulem, N., Held, B., Chapelle, J., J. Phys. D: Appl. Phys. 29, 1952 (1996) CrossRef
Penney, G.W., Hummert, G.T., J. Appl. Phys. 41, 572 (1970) CrossRef
Nicolas, F., Loiseau, J.F., Ercilbengoa, A.E., Peyrous, R., J. Phys. D: Appl. Phys. 31, 3108 (1998) CrossRef
N. Soulem, Application de l'interaction laser-gaz à l'étude des régimes de fonctionnement d'une décharge électrique, Doctorate Thesis, Université de Pau et des Pays de l'Adour (France), 1996