Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:06:00.774Z Has data issue: false hasContentIssue false

Electrical performance of chemical vapor deposition graphene on PET substrate tailored by Cu foil surface morphology

Published online by Cambridge University Press:  20 August 2014

Won-Hwa Park*
Affiliation:
Material Characterization Team, Materials and Components R&D Lab, LG Electronics Advanced Research Institute, 38, Baumoe-ro, Seocho-gu, Seoul 137-724, South Korea
*
a e-mail: [email protected]
Get access

Abstract

The author reports that the spatial luminescent distribution from Cu substrate is in special sync with the Cu substrate morphology in terms of suspended formation of the deposited graphene fabricated via chemical vapor deposition. Moreover, the Raman 2D and G peak position of the graphene relatively shift to high frequency on the even Cu foil domain, showing more compressive strain than the uneven region. The author can reveal that the reducing compressive strain by virtue of the uneven Cu domains in order to minimize the interaction between graphene and Cu substrate has one of the important roles in forming suspended graphene. Current mapping in small dimension additionally shows that the current flow is mostly detected at the nano-terrace regions than the even, further substantiating the significance of the detailed underlying Cu substrate morphology. The author can also shows the correlation between the graphene strain revealed via 2D peak shift on Cu surface and the sheet resistance value of graphene on PET substrate, suggesting the degree of suspended formation of the graphene on Cu may be one of the important factors in increasing electrical performance on PET substrate.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Geim, A.K., Novoselov, K.S., Nature Mater. 6, 183 (2007)CrossRef
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2006)CrossRef
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Mian, F., Lau, C.N., Nano Lett. 8, 902 (2008)CrossRef
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009)CrossRef
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S., Nature Nanotechnol. 5, 574 (2010)CrossRef
Robinson, J.A., Puls, C.P., Staley, N.E., Stitt, J.P., Fanton, M.A., Emtsev, K.V., Seyller, T., Liu, Y., Nano Lett. 9, 964 (2009)CrossRef
Banerjee, S., Sardar, M., Gayathri, N., Tyagi, A.K., Raj, B., Appl. Phys. Lett. 88, 062111 (2006)CrossRef
Ahmad, M., Han, S.A., Tien, D.H., Jung, J., Seo, Y., J. Appl. Phys. 110, 054307 (2011)CrossRef
Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C., Nano Lett. 12, 3925 (2012)CrossRef
Malard, L.M., Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Phys. Rep. 473, 51 (2009)CrossRef
Ferrari, A.C., Solid State Commun. 143, 47 (2007)CrossRef
Berciaud, S., Ryu, S., Brus, L.E., Heinz, T.F., Nano Lett. 9, 346 (2009)CrossRef
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K., Phys. Rev. Lett. 97, 187401 (2006)CrossRef
Wang, Y.Y., Ni, Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W., Wee, A.T.S., J. Phys. Chem. C 112, 10637 (2008)CrossRef
Ni, Z.H., Chen, W., Fan, X.F., Kuo, J.L., Yu, T., Wee, A.T.S., Shen, Z.X., Phys. Rev. B 77, 115416 (2008)CrossRef
Calizo, I., Bao, W., Miao, F., Lau, C.N., Balandin, A.A., Appl. Phys. Lett. 91, 201904 (2007)CrossRef
Calizo, I., Ghosha, S., Baob, W., Miaob, F., Lau, C.N., Balandin, A.A., Solid State Commun. 149, 1132 (2009)CrossRef
Das, A., Chakraborty, B., Sood, A.K., Bull. Mater. Sci. 31, 579 (2008)CrossRef
Park, W.-H., Jung, M., Moon, J.-S., Park, W., Kim, T., Lee, J., Joo, M.H., Park, K.H., Phys. Stat. Sol. B 250, 1874 (2013)CrossRef
Martins Ferreira, E.H., Moutinho, M.V.O., Stavale, F., Lucchese, M.M., Capaz, R.B., Achete, C.A., Jorio, A., Phys. Rev. B 82, 125429 (2010).CrossRef
Cançado, L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C., Nano Lett. 11, 3190 (2011)CrossRef
Huang, M., Yan, H., Chen, C., Song, D., Heinz, T.F., Hone, J., Proc. Natl. Acad. Sci. USA 106, 7304 (2009)CrossRef
Yu, T., Ni, Z., Du, C., You, Y., Wang, Y., Shen, Z., J. Phys. Chem. C 112, 12602 (2008)CrossRef
Mohiuddin, T.M.G., Lombardo, A., Nair, R.R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D.M., Galiotis, C., Marzari, N., Novoselov, K.S., Geim, A.K., Ferrari, A.C., Phys. Rev. B 79, 205433 (2009)CrossRef
Wang, W.X., Liang, S.H., Yu, T., Li, D.H., Li, Y.B., Han, X.F., J. Appl. Phys. 109, 07C501 (2011).CrossRef
Stampfer, C., Molitor, F., Graf, D., Ensslin, K., Jungen, A., Hierold, C., Wirtz, L., Appl. Phys. Lett. 91, 241907 (2007)CrossRef
Yoon, D., Son, Y.-W., Cheong, H., Nano Lett. 11, 3227 (2011)CrossRef
Nix, F.C., MacNair, D., Phys. Rev. 60, 597 (1941)CrossRef
Suk, J.W., Kitt, A., Magnuson, C.W., Hao, Y., Ahmed, S., An, J., Swan, A.K., Goldberg, B.B., Ruoff, R.S., ACS Nano 5, 6916 (2011)CrossRef
Park, W.-H., Jung, M., Park, W., Moon, J.-S., Lee, J., Noh, S.H., Joo, M., Kim, T., Park, K., J. Phys. D: Appl. Phys. 47, 015306 (2014)CrossRef