Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T22:53:35.020Z Has data issue: false hasContentIssue false

Electrical characterization of the diodes-based nanostructure ZnO:B

Published online by Cambridge University Press:  06 June 2012

F. Yakuphanoglu
Affiliation:
Department of Physics, Firat University, Elazig, Turkey
Y. Caglar
Affiliation:
Department of Physics, Anadolu University, 26470 Eskisehir, Turkey
M. Caglar*
Affiliation:
Department of Physics, Anadolu University, 26470 Eskisehir, Turkey
S. Ilıcan
Affiliation:
Department of Physics, Anadolu University, 26470 Eskisehir, Turkey
Get access

Abstract

The diodes-based undoped and boron (B) doped ZnO films deposited onto p-Si by sol-gel method using spin coating technique were fabricated. The morphological properties of ZnO films were analyzed by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) measurements. The results indicated that the surface morphology of the films was affected by the boron incorporation. The diode parameters were determined from the analysis of the measured dark current-voltage curves. The ideality factor of the diodes is higher than unity and was found to be 2.53, 2.36 and 2.17 for the undoped, 0.1% B-doped and 0.3% B-doped ZnO diodes, respectively. The obtained diode parameters like barrier height and ideality factor suggest that B dopant improves rectifying properties of the ZnO diode. The interface states density (Dit) of the diode was determined by conductance-voltage method and Dit values for the undoped, 0.1% B-doped and 0.3% B-doped ZnO diodes were found to be 8.26 × 1011 eV−1 cm−2, 9.75 × 1011 eV−1 cm−2 and 6.61 × 1011 eV−1 cm−2, respectively. The obtained results indicate that the rectifying properties of the diodes-based nanostructure B-doped ZnO can be controlled by boron dopant.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wagner, M.R., Bartel, T.P., Kirste, R., Hoffmann, A., Sann, J., Lautenschlager, S., Meyer, B.K., Kisielowski, C., Phys. Rev. B 79, 035307 (2009)CrossRef
Caglar, M., Ilican, S., Caglar, Y., Yakuphanoglu, F., J. Mater. Sci. Mater. Electron. 19, 704 (2008)CrossRef
Ilican, S., Caglar, Y., Caglar, M., Yakuphanoglu, F., Phys. E 35, 131 (2006)CrossRef
Feng, L.B., Liu, A.H., Liu, M., Ma, Y.Y., Wei, J., Man, B.Y., J. Alloys Compd. 492, 427 (2010)CrossRef
Liao, Y.P., Zhang, J.H., Li, S.X., Guo, Z.S., Cao, J., Zhu, W.Q., Li, X.F., Physica Status Solidi A: Appl. Mater. Sci. 207, 1850 (2010)CrossRef
Ilican, S., Caglar, M., Caglar, Y., Appl. Surf. Sci. 256, 7204 (2010)CrossRef
Yakuphanoglu, F., Ilican, S., Caglar, M., Caglar, Y., Superlattices Microstruct. 47, 732 (2010)CrossRef
Liu, X.D., Jiang, E.Y., Li, Z.Q., J. Appl. Phys. 102, 073708 (2007)CrossRef
Caglar, Y., Ilican, S., Caglar, M., Yakuphanoglu, F., Spectrochimica Acta Part A 67, 1113 (2007)CrossRef
Shin, K.S., Lee, K.H., Lee, H.H., Choi, D., Kim, S.W., J. Phys. Chem. C 114, 15782 (2010)CrossRef
Yang, S.H., Hong, S.Y., Tsai, C.H., Jpn J. Appl. Phys. 49, 06GJ06 (2010)
Ilican, S., Caglar, Y., Caglar, M., Yakuphanoglu, F., Appl. Surf. Sci. 255, 2353 (2008)CrossRef
Ling, B., Zhao, J.L., Sun, X.W., Tan, S.T., Yang, Y., Dong, Z.L., IEEE Trans. Electron Devices 57, 1948 (2010)CrossRef
Rakhshani, A.E., J. Appl. Phys. 108, 094502 (2010)CrossRef
Manekkathodi, A., Lu, M.Y., Wang, C.W., Chen, L.J., Adv. Mat. 22, 4059 (2010)CrossRef
Jing, M.J., Xin, J.K., Cheng, L.B., Fei, F., Hui, X., Chao, Z.C., Le, C.C., Chin. Phys. Lett. 27, 107304 (2010)CrossRef
Zhu, G., Liu, Y., Zhang, C., Zhu, Z., Xu, Z., Chem. Lett. 39, 994 (2010)CrossRef
Yakuphanoglu, F., J. Alloys Compd. 494, 451 (2010)CrossRef
Bo, H., Quan, M.Z., Jing, X., Lei, Z., Sheng, Z.N., Feng, L., Cheng, S., Ling, S., Jie, M.X., Yue, Z.C., Shan, Y.Z., Ting, Y.Y., Superlattices Microstruct. 46, 664 (2009)
Ajimsha, R.S., Jayaraj, M.K., Kukreja, L.M., J. Electron. Mater. 37, 770 (2008)CrossRef
Sze, S.M., Kwok, K.N., Physics of Semiconductor Devices (John Willey & Sons, New York, 2007)Google Scholar
Rhoderick, E.H., Williams, R.H., Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)Google Scholar
Sah, C., Noycc, R.N., Shockley, W., Proc. IRE 45, 1228 (1957)CrossRef
Karatas, Ş., Temirci, C., Çakar, M., Türüt, A., Appl. Surf. Sci. 252, 2209 (2006)CrossRef
Yakuphanoglu, F., Sens. Actuators A Phys. 141, 383 (2008)CrossRef
Caglar, Y., Caglar, M., Ilican, S., Yakuphanoglu, F., Microelectronic. Eng. 86, 2072 (2009)CrossRef
Song, Y.P., Van Meirhaeghe, R.L., Laflere, W.H., Cardon, F., Solid-State Electron. 29, 633 (1986)CrossRef
Yakuphanoglu, F., Şenkal, B.F., J. Phys. Chem. C. 111, 1840 (2007)CrossRef
Depas, M., Van Meirhaeghe, R.L., Laflere, W.H., Cardon, F., Solid-State Electron. 37, 433 (1994)CrossRef
Yakuphanoglu, F., J. Alloys Compd. 507, 184 (2010)CrossRef
Yıldız, D.E., Altındal, Ş., Microelectronic. Eng. 85, 289 (2008)CrossRef
Nicollian, E.H., Goetzberger, A., Bell Syst. Technol. J. 46, 1055 (1967)CrossRef
Dökme, I., Altındal, Ş., Tunç, T., Uslu, I., Microelectron. Reliab. 50, 39 (2010)CrossRef
Dokme, I., Tunç, T., Uslu, I., Altındal, Ş., Synth. Met. 161, 474 (2011)CrossRef
Nicollian, E.H., Brews, J.R., MOS (Metal-Oxide-Semiconductor) Physics and Technology (John Wiley and Sons, New York, 1982)Google Scholar
Hill, W.A., Coleman, C.C., Solid-State Electron. 23, 987 (1980)CrossRef