Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:35:36.237Z Has data issue: false hasContentIssue false

Electrical and optical properties ofamorphous Ga2Te3 films

Published online by Cambridge University Press:  15 December 2001

A. E. Bekheet*
Affiliation:
Semiconductor Laboratory, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
Get access

Abstract

Ga2Te3 has been prepared in bulk and thin film forms. The composition of films has been checked using energy dispersive X-ray (EDX) spectroscopy technique. X-ray diffraction (XRD) measurements have showed that the Ga2Te3 films evaporated at room temperature substrates were amorphous. Investigation of the I-V characteristics in amorphous Ga2Te3 films reveals that it is typical for a memory switch. The thickness dependence of the mean value of the switching voltage Vth is linear in the investigated range and Vth decreases exponentially with temperature in the range (298−393 K). The switching voltage activation energy (ε) calculated from the temperature dependence of Vth is found to be 0.277 eV. Electrical conduction activation energy ($E_{\sigma}$) is found to be (0.564 eV). The agreement between the obtained value of the ratio $\varepsilon/E_{\sigma}$ (0.49) and its value derived theoretically (0.5) suggests that the switching phenomenon in amorphous Ga2Te3 films is explained according to an electrothermal model for the switching process. The transmittance (T) of Ga2Te3 thin films, has been measured over the wavelength range 400−2500 nm. From an analysis of the transmittance data, the optical constants, the refractive index (n) and the extinction coefficient (k), have been determined. Similarly the absorption coefficient (α) measurements, have been evaluated. Allowed nondirect transitions with optical energy gap ($E_{\rm g}^{\rm opt}$) of 1.15 eV have been obtained.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Julien, C., Eddrief, M., Kambas, K., Balkanski, M., Thin Solid Films 137, 27 (1986). CrossRef
Koshio, M., Nagata, K., Phys. Stat. Sol. B 211, 123 (1999).
Peressi, M., Baldereschi, A., J. Appl. Phys. 83, 83 (1998). CrossRef
Holender, J.M., Gillan, M.J., Phys. Rev. B 53, 4399 (1996). CrossRef
Sen, S., Bose, D.N., Solid State Commun. 50, 39 (1984). CrossRef
Julien, C., Chevy, A., Siapkas, D., Phys. Stat. Sol. A 118, 553 (1990). CrossRef
A.A. Zahab, M. Abd-Lefdil, M. Cadene, Phys. Stat. Sol. A 17, k103 (1990).
Jung, A.L., Situ, H., Lu, Y.W., Wang, Z.T., He, Z.G., J. Non-Cryst. Solids 114, 55 (1989). CrossRef
Kambas, K., Spyridelis, J., Mater. Res. Bull. 13, 653 (1978). CrossRef
S. Sen, D.N. Bose, Phys. Stat. Sol. A 66, k117 (1981).
D.P. Singh, U.C. Upreti, Physics of Semiconductor Devices (Delhi, India: Narosa Publishing House, 1998), Vol. 2, p. 1267.
Serebryanaya, N.R., Powder Diff. 7, 99 (1992). CrossRef
Becla, P., Gumienny, Z., Pawlikowski, J.M., Opt. Appl. 12, 143 (1982).
Guymont, M., Tomas, A., Guittard, M., Philos. Mag. A 66, 133 (1992). CrossRef
Aliev, S.I., Niftiev, G.M., Pliev, F.I., Tagiev, B.G., Sov. Phys. Sem. 13, 340 (1977).
El-Shair, H.T., Bekheet, A.E., J. Phys. D Appl. Phys. 25, 1122 (1992). CrossRef
Afifi, M.A., Labib, H.H., Hegab, N.A., Fadel, M., Bekheet, A.E., Indian Pure Appl. Phys. 33, 129 (1995).
Afifi, M.A., Hegab, N.A., Bekheet, A.E., Vacuum 47, 265 (1996). CrossRef
Hegab, N.A., Afifi, M.A., El-Shazly, A.E., Bekheet, A.E., J. Mater. Sci. 33, 2441 (1998). CrossRef
Hegab, N.A., Bekheet, A.E., Afifi, M.A., El-Shazly, A.E., Appl. Phys. A 66, 235 (1998). CrossRef
Afifi, M.A., Hegab, N.A., Bekheet, A.E., Vacuum 46, 335 (1995). CrossRef
Afifi, M.A., Abd Elwahhab, E., Bekheet, A.E., Attia, H.E., Acta Phys. Pol. A 28, 403 (2000).
N.A. Hegab, A.E. Bekheet, J. Mater. Sci., to be published.
Afifi, M.A., Bekheet, A.E., Abd Elwahhab, E., Attia, H.E., Vacuum 61, 9 (2001). CrossRef
Singh, D.P., Kundra, K.D., J. Mater. Sci. Lett. 8, 524 (1989). CrossRef
Thrnburg, D.D., J. Non-Cryst. Solids 11, 113 (1972). CrossRef
Denton, G.A., Friedman, G.M., Schetzina, J.F., J. Appl. Phys. 46, 3044 (1975). CrossRef
Abd El-Salam, F., Afifi, M.A., Abd Elwahhab, E., Vacuum 44, 17 (1993). CrossRef
Boer, K.W., Ovshinsky, S.R., J. Appl. Phys. 41, 6 (1970). CrossRef
Shimakova, K., Inagaki, Y., Arizomi, T., Jpn. J. Appl. Phys. 12, 1043 (1973). CrossRef
Mehra, R., Shyam, R., Mathur, P.C., J. Non-Cryst. Solids 31, 435 (1979). CrossRef
Neufeld, J.D., Andermann, G., J. Opt. Soc. Am. 62, 1156 (1972). CrossRef
O.S. Heavens, Optical Properties of thin solid films (London: Butterworth, 1955), p. 92.
Swanepoel, R., J. Phys. E: Sci. Instrum. 16, 1214 (1983). CrossRef
J. Tauc, Amorphous and Liquid Semiconductors, edited by J. Tauc (New York: Plenum, 1974), p. 159.
Davis, E., Mott, N.F., Philos. Mag. 22, 903 (1970). CrossRef
Tauc, J., Grigorovici, R., Vancu, A., Phys. Stat. Sol. 15, 627 (1966). CrossRef
Ilyas, M., Zulfequar, M., Khan, Z.H., Husain, M., Opt. Mater. 11, 67 (1998). CrossRef
Guizzetti, G., Meloni, F., Balderschi, A., J. Phys. Soc. Jap. 49, 93 (1980).