Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:49:11.655Z Has data issue: false hasContentIssue false

Electrical and electromechanical studies in ferroelectric Gd3+ modified lead potassium niobate ceramics

Published online by Cambridge University Press:  11 August 2011

K. Sambasiva Rao*
Affiliation:
Centre for Piezoelectric Transducer Materials, Department of Physics, Andhra University, Visakhapatnam, 530 003, India
P. Murali Krishna
Affiliation:
Department of Physics, GVP College of Engineering, Visakhapatnam, India
Madhava P. Dasari
Affiliation:
Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam, India
J.H. Lee
Affiliation:
Department of Inorganic Materials Engineering, Kyung Pook National University, Daegu 702701, Republic of Korea
*
Get access

Abstract

The change in dielectric constant relaxation time over temperature (35–590 °C) and frequency (45 Hz–5 MHz) in ceramics of Pb0.77K0.115Gd0.115Nb2O6 (PKGN, Tc = 340 °c) has been studied. Powder X-ray diffraction revealed the single-phase formation with orthorhombic crystal structure. The P-E hysteresis loop parameters are Ps = 21.77 μC/cm2, Pr = 17.09 μC/cm2, Ec = 11.86 kV/cm; the piezoelectric constants, Kp = 31.7%, Kt = 47%, d33 = 115 × 10−12 C/N, d31 = −41 × 10−12 C/N, are determined in the material and some transducer applications are discussed. Cole-Cole (Zll vs. Zl) plots showed a non-Debye type relaxation. Conductivity obeyed Jonscher’s universal power law, σ = σ0 + Aωn. The theoretical values of εl and σ are computed using the parameters ‘A(T)’ and ‘n(T)’ (0 < n < 1) and are well fitted with the experimental data. The hopping ion frequency (ωp) and charge carrier concentration (Kl) have been analyzed using Almond-West formalism. The dielectric relaxation processes are associated with localized oxygen vacancies conduction at high frequency region. A long-range conductivity by Gd3+ ions is found to be predominant at low frequency region. The activation energies from impedance and modulus formalisms revealed the ionic type conduction in PKGN.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uchino, K., Ferroelectric Devices (Marcel Deckker, New York, 2000)Google Scholar
Xu, Y., Ferroelectric Materials and Their Applications (Elsevier Science Publishers, New York, 1991)Google Scholar
Stennett, M.C., Reaney, I.M., Miles, G.C., West, A.R., J. Amer. Ceram. Soc. 90, 980 (2007)CrossRef
Jaffe, B., Cook, W.R., Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971)Google Scholar
Jamieson, P.B., Abrahamsand, S.C., Bernstein, J.L., J. Chem. Phys. 48, 4352 (1968)CrossRef
Nakano, J., Yamada, T., J. Appl. Phys. 46, 2361 (1975)CrossRef
Jana, P., Kallur, V.A., Drummond, M.A., Niigli, S., Pandey, R.K., in Proc. of 8th IEEE Int. Symp. on Applications of Ferroelectrics, Greenville, SC, USA, 1992, pp. 374376
Kimura, H., Maiwa, K., Miyazaki, A., Nakamura, H., Cheng, Z., Venkadasamy, K.C., Jpn. J. Appl. Phys. 43, 6658 (2004)CrossRef
Kimura, H., Maiwa, K., Miyazaki, A., Venkadasamy, K.C., Cheng, Z., Jpn. J. Cryst. Growth 275, 883 (2005)
Yamada, T., Appl. Phys. Lett. 23, 213 (1973)CrossRef
Liu, S.T., J. Electron. Mater. 4, 91 (1975)CrossRef
Jiang, W., Cao, W., Yi, X.J., Chen, H.C., J. Appl. Phys. 97, 094106 (2005)CrossRef
Tressler, J.F., Alkoy, S., Newnham, R.E., J. Electro-ceram. 2, 257 (1998)CrossRef
Newnham, R.E., MRS Bull. 22, 20 (1997)CrossRef
Elissalde, C., Ravez, J., J. Mater. Chem. 11, 1957 (2001)CrossRef
Raymond, O., Font, R., Almodonar, N.S., Protelles, J., Siqueiros, J.M., J. Appl. Phys. 97, 084108 (2005)CrossRef
Jiang, W., Cao, W., Yi, X.J., Chen, H.C., J. Appl. Phys. 97, 094106 (2005)CrossRef
Nobre, M.A.L., Lanfredi, S., Catal. Today 78, 529 (2003)CrossRef
Molak, A., Paluch, M., Pawlus, S., Limontko, J.K., Ujma, Z., Gruszka, I., J. Phys. D: Appl. Phys. 38, 1450 (2005)CrossRef
Jonscher, A.K., Dielectric Relaxation in Solids (Chelsia Dielectric Press, London, 1983)Google Scholar
Sambasiva Rao, K., Murali Krishna, P., Swarna Latha, T., Madhava Prasad, D., Mater. Sci. Eng. B 131, 127 (2006)
Sambasiva Rao, K., Murali Krishna, P., Madhava Prasadand, D., Lee, J.H., Int. J. Mod. Phys. B 21, 931 (2007)CrossRef
Sambasiva Rao, K., Murali Krishna, P., Madhava Prasad, D., Lee, J.H., Kim, J.-S., J. Alloys Compd. 464, 497 (2008)
Wu, E., J. Appl. Cryst. 22, 506 (1989)CrossRef
Cullity, B.D., Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley Publisher, USA, 1978)Google Scholar
Belnding, G.H., McLaren, M.G., J. Amer. Ceram. Soc. 49, 1025 (1970)
Wang, X.X., Tangand, X.G., Chan, H.L.W., Appl. Phys. Lett. 85, 91 (2004)CrossRef
Chowdary, P.R., Deshpande, S.B., Indian J. Pure Appl. Phys. 22, 708 (1984)
Sakamura, J., et al., Jpn. J. Appl. Phys. 38, 3204 (1999)
Buchanan, R.C. (ed.), Ceramic Materials for Electronics, 2nd edn. (Marcel Dekker Inc., New York, 1990) pp. 184187 Google Scholar
Lu, Z., Reau, J.M., Ravez, J., Solid State Ion. 91, 183 (1996)
Funke, K., Progr. Solid State Chem. 22, 111 (1993)CrossRef
Almond, D.P., West, A.R., Solid State Ion. 9, 277 (1983)CrossRef
Venkataramanan, B.H., Varma, K.B.R., J. Phys. Chem. Solids 66, 1640 (2005)CrossRef
Shrout, T.R., Chenand, H., Cross, L.E., Ferroelectric Lett. 74, 317 (1987)CrossRef
Elissalde, C., Ravez, J., J. Mater. Chem. 11, 1957 (2001)CrossRef
Cole, K.S., Cole, R.H., J. Chem. Phys. 9, 341 (1941)CrossRef
Macdonald, R., (ed.), Impedance Spectroscopy (John Wiley & Sons, New York, 1987) pp. 139147 Google ScholarPubMed
Kim, J.S., J. Korean Phys. Soc. 43, 1081 (2003)
Sundarakannan, B., Kakimoto, K., Ohsato, H., J. Appl. Phys. 94, 5182 (2003)CrossRef