Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T20:50:35.479Z Has data issue: false hasContentIssue false

The electrical activity of IMPATT diodes on a nanometric scale by X-STEBIC method

Published online by Cambridge University Press:  15 April 2000

H. Maya
Affiliation:
Laboratoire de Physique du Solide, CNRS-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
C. Cabanel
Affiliation:
Laboratoire de Physique du Solide, CNRS-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
J.-Y. Laval*
Affiliation:
Laboratoire de Physique du Solide, CNRS-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France
L. Peymayeche
Affiliation:
Institut d'Électronique Fondamentale, Université Paris XI, Bât. 220, 91405 Orsay Cedex, France
A. de Lustrac
Affiliation:
Institut d'Électronique Fondamentale, Université Paris XI, Bât. 220, 91405 Orsay Cedex, France
F. Bouillaut
Affiliation:
Laboratoire de Génie Électrique de Paris, SUPELEC, plateau du Moulon, 91192 Gif-sur-Yvette, France
Get access

Abstract

The Scanning Transmission Electron Beam Induced Current Technique (STEBIC) was adapted to allow the analysis of local electrical activity in semiconductor diodes. This technique enabled us to analyse the in situ properties of IMPATT junctions (IMPact Avalanche Transit Time: which are Si doped $p^+/p/n/n^+$ multijunctions). The samples were thinned down as cross-sections, to be observed and analysed in transmission electron microscopy. The current induced by the electron beam was collected by the depleted zone. By synchronising measurements with each scan of the electron beam, the electrical activity can be viewed at a very local scale. The STEBIC signal was simulated by using a model of drift-diffusion. The prevailing role of the recombination rate on the form of the STEBIC profile was evidenced. We found that the spatial resolution of this method depends on the thickness of the sample and on the zone where the measurement is taken. We show that the spatial resolution of this method is optimal when the electron beam is localised in the p/n depleted zone. In thin areas, the maximum spatial resolution is calculated to be $\le 20$ nm. Outside the electric field the transport phenomena are governed by the diffusion of carriers and the signal width is widened.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Read, W.T., Bell System Tech. J. 37, 446 (1958). CrossRef
Culshaw, B., Giblin, R.A., Blakey, P.A., Int. J. Electron. 39, 121 (1975). CrossRef
Chien-Chung Chen, R.K. Mains, G.I. Haddad, IEEE Trans. Electron Devices 38, 1701 (1991). CrossRef
Behr, W., Luy, J.F., IEEE Trans. Electron Devices Lett. 11, 205 (1990). CrossRef
Dalle, C., Rolland, P.A., Lleti, G., IEEE Trans. Electron Devices 37, 227 (1990). CrossRef
Dalle, C., Rolland, P.-A., IEEE Trans. Microwave Theory Tech. 38, 366 (1990). CrossRef
Rolland, P.A., Dalle, C., Friscourt, M.R., IEEE EDL 12, 221 (1991). CrossRef
B.L. Morris, J. Electrochem. Soc.: Solid-State Science and Technology, 121, 422 (1974).
Khandelwal, D.D., SPIE. Vol. 337, 28 (1982). CrossRef
Hu, S.M., J. Appl. Phys. 53, 1499 (1982). CrossRef
Sparrow, T.G., Valdre, U., Philos. Mag. 36, 1517 (1977). CrossRef
Cabanel, C., Laval, J.-Y., J. Appl. Phys. 67, 1425 (1990). CrossRef
T. Benabbas, C. Cabanel, J.-Y. Laval, J.L. Pastol, Nguyen Dinh Huynh, Rev. Phys. Appl. C1 (Supplément au n $^{\circ}$ 1, Tome 51), 439 (1990).
Petroff, P.M., Logan, R.A., Savage, A., Phys. Rev. Lett. 44, 287 (1980). CrossRef
Brown, P.D., Humphreys, C.J., Inst. Phys. Conf. Ser. 147, 285 (1995).
Cabanel, C., Maya, H., Laval, J.-Y., Philos. Mag. Lett. 79, 55 (1999). CrossRef
Donolato, C., Solid-State Electron. 25, 1077 (1882). CrossRef
Donolato, C., J. Appl. Phys. 54, 1314 (1983). CrossRef
Donolato, C., Solid-State Electron. 25, 11143 (1985).
Kaufmann, K., Balk, L.J., J. Appl. Phys. 28, 914 (1995).
S. Selberherr, Analysis an Simulation of Semiconductor Devices (Springer-Verlag, Wien, New-York, 1984).
Marten, H.W., Hildebrand, O., Scanning Electron Microscopy 3, 1197 (1983).
Marten, H.W., Hildebrand, O., Beitr. Elektronenmikroskop. Direktabb. Oberfl. 15, 121 (1982).
Duchemin, J.P., J. Electrochem. Soc. 128, 2187 (1978).
Duchemin, J.P., Bonnet, M., Koelsch, F., J. Electrochem. Soc. 125, 637 (1978). CrossRef
L. Peymayeche-Rochebois, Thèse de l'Université d'Orsay Paris XI, Octobre 1998.
Donolato, C., Phys. Stat. Sol. A 65, 649 (1981). CrossRef
Hawryluk, R.J., Hawryluk, A.M., Smith, H.I., J. Appl. Phys. 45, 2551 (1974). CrossRef
Katz, L., Penfold, A.S., Rev. Mod. Phys. 24, 38 (1952). APS Link not valid for this citation CrossRef
J.L. Goldstein, J.L. Costtley, G.W. Lorimer, S.J.B. Reed, SEM Inc. (AMF O'hare, Illinois 60666 USA), 1977, p. 315.
Everhart, T.E., Hoff, P.H., J. Appl. Phys. 42, 5837 (1971). CrossRef
L. Reimer, Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, 2nd edn., Springer Series in Optical Sciences Volume 36, edited by P.W. Hawkes, p. 178.
Caughey, D.M., Thomas, R.E., Proc. IEEE 52, 2192 (1967). CrossRef
Jacoboni, C., Canali, C., Ottaviani, G., Quaranta, A.A., Solid-State Electron. 20, 77 (1977). CrossRef
Shockley: Electrons and Holes in Semiconductors (Dc Van Nostrand, Company, Inc, 250 fourth, New York 3, 1950).