Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-07T16:27:19.141Z Has data issue: false hasContentIssue false

Electric wind characterisation in negative point-to-plane corona discharges in air

Published online by Cambridge University Press:  25 February 2003

Ph. Béquin*
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine, UMR – CNRS 6613, Université du Maine, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
K. Castor
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine, UMR – CNRS 6613, Université du Maine, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
J. Scholten
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine, UMR – CNRS 6613, Université du Maine, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
Get access

Abstract

In point-to-plane corona discharges in air, the collisions of charged particles with neutral particles induce a gas movement between the point to the plane called electric wind. A one-dimensional model of the neutral particle velocity along the discharge axis and between the electrodes is first developed. Laser Doppler Anemometry is used to measure the axial velocity profile of the gas between the electrodes. Discrepancies between experimental results and predictions of the on-axis velocity are discussed. Finally, the measured velocity profile compares quite well with a cos5θ distribution. Significant differences between measured and cos5θ profiles are observed near the discharge axis which could be attributed to the presence of seeding particles.  

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L.B. Loeb, Electrical coronas (University of California Press, 1965)
E. Nasser, Fundamentals of Gaseous ionisation and plasmas electronics (Wiley, New York, 1971), Vol. 1
Lama, W.L., Gallo, C.F., J. Appl. Phys. 45, 103 (1974) CrossRef
M. Goldman, A. Goldman, Gaseous electronics (Academic Press, New York, 1978), Vol. 1
E.E. Kunhardt, L.H. Luessen, Electrical breakdown and discharges in Gases (Plenum Press, New York, 1982)
Y.P. Raiser, Gas discharge physics (Springer-Verlag, Berlin Heidelberg, 1991)
Jones, J.E., J. Phys. D: Appl. Phys. 32, 1243 (1999) CrossRef
Paillol, J., Espel, P., Reess, T., Gibert, A., Domens, P., J. Appl. Phys. 91, 5614 (2002) CrossRef
Robinson, M., Trans. Am. Inst. Elect. Engin. 80, 143 (1961)
Sigmond, R.S., Rev. Int. Hautes Tempér. Réfract., Fr. 25, 201 (1989)
R.S. Sigmond, A. Goldman, M. Goldman, Ring vortex gas flow in negative point coronas, Proc. 10th Int. Conf. On Gas Disch. And their Appl., Swansea, UK, 1992, pp. 330-333
Sigmond, R.S., Lågstad, I.H., Plasma Phys. Rep. 2, 221 (1993)
Akishev, Y.S., Kochetov, I.V., Napartovich, A.P., Trushkin, N.I., Plasma Phys. Rep. 21, 179 (1995)
A.P. Napartovich, Y.S. Akishev, A.A. Deryugin, I.V. Kochetov, M.V. Pan'kin, N.I. Trushkin, J. Phys. D: Appl. Phys. 30 2726 (1997)
Akishev, Y.S., Grushin, M.E., Kochetov, I.V., Napartovich, A.P., Trushkin, N.I., Plasma Phys. Rep. 25, 922 (1999)
Thanh, L.C., Electron. Lett. 15, 57 (1979) CrossRef
P. Ballereau, Étude du vent électrique. Contribution à l'étude et à la réalisation d'un détecteur de pollution, Ph.D. Thesis, Université Paris-Sud centre Orsay, France, 1980
Bondar, H., Bastien, F., J. Phys. D: Appl. Phys. 19, 1657 (1986) CrossRef
Béquin, Ph., Montembault, V., Herzog, Ph., Eur. Phys. J. AP 15, 57 (2001) CrossRef
Owsenek, B.L., Seyed-Ygoobi, J., Page, R.H., ASME J. Heat Transfer 117, 309 (1995) CrossRef
Batina, J., Noël, F., Lachaud, S., Peyrous, R., Loiseau, J.F., J. Phys. D: Appl. Phys. 34, 1510 (2001) CrossRef
Bayle, P., Bayle, M., Forn, G., J. Phys. D: Appl. Phys. 18, 2395 (1985) CrossRef
Bayle, P., Bayle, M., Forn, G., J. Phys. D: Appl. Phys. 18, 2417 (1985) CrossRef
Bayle, P., Vacquie, P., Bayle, M., Phys. Rev. A 34, 360 (1986) CrossRef
Bayle, P., Vacquie, P., Bayle, M., Phys. Rev. A 34, 372 (1986) CrossRef
Robson, R., Paranjape, B., Phys. Rev. A 45, 8972 (1992) CrossRef
O. Eichwald, Modélisation de la dynamique des neutres dans une décharge transitoire : application aux microsystèmes électroniques et aux dispositifs de dépollution, Ph.D. Thesis, Université Paul Sabatier de Toulouse, Toulouse, France, 1997
Sigmond, R.S., J. Appl. Phys. 53, 891 (1982) CrossRef
Sigmond, R.S., J. Electrostat. 18, 249 (1986) CrossRef
Madani, M.R., Miller, T.A., IEEE Trans. Ind. Appl. 47, 907 (1998)
Francke, E., Amouroux, J., Plasma Chem. Plasma Process. 17, 433 (1997) CrossRef
Francke, E., Robert, S., Amouroux, J., High Temp. Mater. Process. 4, 139 (2000) CrossRef
V. Montembault, Étude des sources acoustiques associées aux décharges corona négatives, Ph.D. Thesis, Université du Maine, Le Mans, France, 1997
Valière, J.C., Herzog, Ph., Valeau, V., Tournois, G., J. Sound Vibrat. 229, 607 (2000) CrossRef
K. Castor, Caractérisation des sources acoustiques associées aux décharges couronnes négatives, Ph.D. Thesis, Université du Maine, Le Mans, France, 2001
A. Goldman, M. Goldman, J.E. Jones, M. Yumoto, Current distributions on the plane for point-plane negative coronas in air, nitrogen and oxygen, Proc. 9th Int. Conf. On Gas Disch. And their Appl., Venezia, Italy, 1988, pp. 197-200
Robledo-Martinez, A., J. Electrostat. 29, 101 (1992) CrossRef
Boutlendj, M., Allen, N.L., IEEE Trans. Electr. Ins. 28, 86 (1993) CrossRef