Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:49:20.060Z Has data issue: false hasContentIssue false

Electric discharge fluid modelling with the contributionof convective and drift energy effects

Published online by Cambridge University Press:  25 October 2005

S. Elaissi
Affiliation:
IPEIM, route de Kairouan, 5019 Monastir, Tunisia
M. Yousfi*
Affiliation:
Université Paul Sabatier, CPAT-UMR 5002 CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
K. Charrada
Affiliation:
IPEIM, route de Kairouan, 5019 Monastir, Tunisia
L. Troudi
Affiliation:
IPEIM, route de Kairouan, 5019 Monastir, Tunisia
Get access

Abstract

A fluid model has been used in this work to analyze the electric and energetic behavior of a low-pressure DC glow discharge in Ar chosen as a gas test. The governing equations are the first three moments of the Boltzmann transport equations under their complete form without using the classical-drift-diffusion approximation for the momentum transfer equation while the energy conservation equation involves both thermal and drift energies. In the framework of the local energy approximation, the basic data needed more particularly in the collision source terms for both momentum transfer and energy equations are determined from a multi term solution of Boltzmann equation. Due to the strong coupling with electric field obtained from Poisson equation and the high sheath gradients, the transport equations are numerically solved using a powerful Galerkin finite elements method. This model, after a validation from comparison with literature results, is then used to analyze the convective and drift energy effects on the electric discharge characteristics. Present results show a large influence of the convective term in comparison to the drift-diffusion approximation, mainly on the electric field and charged density profiles due to the antagonist effect induced by this term on the electron and ion motion which reinforces the charge space. Present results show also the discharge characteristic changes mainly in the sheath due to the drift energy consideration.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Chapman, Glow discharge processes (John Wiley Sons, New York, 1980)
B.E. Cherrington, Gaseous electronics and gas lasers (Pergamon, New York, 1979)
Graves, D.B., Jensen, K.F., IEEE T. Plasma Sci. 14, 78 (1986) CrossRef
Y.H Lin, Ph.D. thesis of University of Maryland, 1999; Y.H. Lin, A. Adomaitis, Phys. Lett. A 243, 142, (1998)
Radouane, K., Despax, B., Yousfi, M., Couderc, J.P., Klusmann, E., Meyer, H., Schulz, R., Schulze, J., J. Appl. Phys. 90, 4346 (2001)
Li, C. Wu, IEEE T. Plasma Sci. 20, 1000 (1992) CrossRef
M. Meyyappan, J.P. Kreskovsky, J. Appl. Phys. 68, 1506, (1990)
Schmitt, W., Kohler, W.E., Ruder, H., J. Appl. Phys. 71, 5783 (1992) CrossRef
Kanzari, Z., Yousfi, M., Hamani, A., J. Appl. Phys. 84, 4161 (1998) CrossRef
Yousfi, M., Benabdessadok, M.D., J. Appl. Phys. 80, 6619 (1996) CrossRef
G. Dhatt, G. Touzot, Une présentation de la méthode des éléments finis (S.A. Maloine, Paris, 1984)
J.H. Ferziger, P. Milovan, Computational methods for fluid dynamics (Spinger-Verlag, Berlin Heidelberg, Germany, 1996)
Yousfi, M., Hennad, A., Eichwald, O., J. Appl. Phys. 84, 4161 (1998) CrossRef
Lowke, J.J., Davies, D.K., J. Appl. Phys. 48, 499 (1977) CrossRef
Date, L., Radouane, K., Despax, B., Yousfi, M., Caquineau, H., Hennad, A., J. Phys. D Appl. Phys. 32, 1478 (1999) CrossRef