Published online by Cambridge University Press: 23 December 2010
This paper deals with a technique for calculating the 3D E-field components knowing only the two components (H x and H y ) of the H-field in near-zone. The originality of the under study technique lies on the possibility to take into account the evanescent wave influences. The presented E-field extraction process is based on the exploitation of the Maxwell-Ampere relation combined with the plane wave spectrum (PWS) method. The efficiency of the proposed technique is evidenced by comparing the E-field deduced from H-field and the own E-field radiated by the association of electrical- and also magnetic- elementary dipoles in different configurations by using Matlab text programming environment. In addition, as a concrete demonstrator, the concept was also validated with the computation of EM-wave radiated by an open-end microstrip transmission line. As result of comparison, very good agreement between the exact E-field and that one extracted from the H-field was realized by considering the near-field scanned at the height, z = 5 mm and 8 mm above the under test structure at the operating frequency, f = 1 GHz. The presented technique can simplify the difficulties about the E-near-field measurement in EMC applications.