Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T00:36:48.150Z Has data issue: false hasContentIssue false

Effects of sintering temperature on physical properties of nanocrystalline La0.85Na0.15MnO3 ceramics

Published online by Cambridge University Press:  14 November 2011

K.L. Liu*
Affiliation:
Department of Physics, Zhoukou Normal University, Zhoukou 466000, P.R. China
C.Y. Li
Affiliation:
Department of Physics, Zhoukou Normal University, Zhoukou 466000, P.R. China
D.Y. Wu
Affiliation:
Department of Physics, Zhoukou Normal University, Zhoukou 466000, P.R. China
Y.Q. Wang
Affiliation:
Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
*
Get access

Abstract

Nanocrystalline La0.85Na0.15MnO3 ceramics were prepared via a novel method based on chemical solution combustion. Effects of sintering temperature on electrical transport and magnetic properties were systematically investigated. It was found that the resistivity increases, the magnetization decreases, and the metal-insulator transition temperature shifts toward low temperatures with the decrease of the sintering temperature. In addition, the magnetization of the samples sintered at low temperatures exhibits a broadened paramagnetic-to-ferromagnetic transition temperature. The low field magnetoresistance evidently increases with decreasing the sintering temperature due to the spin-polarized intergranular tunneling.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hwang, H.Y., Cheong, S.W., Ong, N.P., Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996)CrossRef
Mayr, M., Moreo, A., Vergés, J.A., Arispe, J., Feiguin, A., Dagotto, E., Phys. Rev. Lett. 86, 135 (2001)CrossRef
Lei, L.W., Fu, Z.Y., Zhang, J.Y., Wang, H., Mater. Sci. Eng. B 128, 70 (2006)CrossRef
Schiffer, P., Ramirez, A.P., Bao, W., Cheong, S.W., Phys. Rev. Lett. 75, 3336 (1995)CrossRef
Rao, G.H., et al., J. Phys.: Condens. Matter 11, 1523 (1999)
Shimura, T., Hayashi, T., Inaguma, Y., Itoh, M., J. Solid State Chem. 124, 250 (1996)CrossRef
Wang, T., et al., J. Alloys Compd. 458, 248 (2008)CrossRef
Ahmed, A.M., et al., J. Magn. Magn. Mater. 320, L43 (2008)CrossRef
Kalyana Lakshmi, Y., Venkataiah, G., Vithal, M., Venugopal Reddy, P., Physica B 403, 3059 (2008)CrossRef
Rivas, J., et al., J. Magn. Magn. Mater. 221, 57 (2000)CrossRef
Alessandri, I., et al., Mater. Sci. Eng. B 109, 203 (2004)CrossRef
Lakshmi, Y.K., Reddy, P.V., J. Alloys Compd. 470, 67 (2009)CrossRef
Li, X.H., et al., Solid State Commun. 145, 98 (2008)CrossRef
Huang, Y.H., Linden, J., Yamauchi, H., Karppinen, M., Chem. Mater. 16, 4337 (2004)CrossRef
Kameli, P., Salamati, H., Aezami, A., J. Alloys Compd. 450, 7 (2008)CrossRef
Miao, J.H., et al., J. Phys. D: Appl. Phys. 40, 707 (2007)CrossRef
Xiang, Y., et al., J. Magn. Magn. Mater. 321, 1188 (2009)CrossRef
Dong, W.W., Zhub, X.B., Tao, R.H., Fang, X.D., J. Cryst. Growth 290, 180 (2006)CrossRef
Gaur, A., Varma, G.D., Singh, H.K., J. Phys D: Appl. Phys. 39, 3531 (2006)CrossRef
Huang, Y.H., Yamauchi, H., Karppinen, M., Phys. Rev. B 74, 174418 (2006)CrossRef