Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T07:13:25.128Z Has data issue: false hasContentIssue false

Effects of magnetic and electric fields on the growth of carbon nanotubes using plasma enhanced chemical vapor deposition technique

Published online by Cambridge University Press:  02 October 2009

M. Baghgar
Affiliation:
Nanophysics laboratory, Department of Physics, University of Tehran, Iran
Y. Abdi
Affiliation:
Nanophysics laboratory, Department of Physics, University of Tehran, Iran
E. Arzi*
Affiliation:
Nanophysics laboratory, Department of Physics, University of Tehran, Iran
Get access

Abstract

Multiwalled carbon nanotubes are grown on nickel-seeded silicon substrates using plasma-enhanced chemical vapor deposition method at a temperature of 650 °C utilizing a mixture of acetylene and hydrogen. Magnetic and electric fields were used to obtain well-oriented carbon nanotubes. The direction of growth was found to strongly depend on the directions and magnitudes of the applied fields. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) have been used to investigate the grown nanotubes. The SEM and TEM images of as grown nanotubes show that applying magnetic field during the growth process affects the growth direction of the nanotubes and, furthermore, bent nanotubes can be achieved by changing the direction of the applied electric field alone. Raman spectroscopy has been used to analyze the structure of the samples. 

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, J., Stevens, R., Delzeit, L., Cassell, A., Hah, J., Meyyappan, M., Appl. Phys. Lett. 81, 910 (2002) CrossRef
Mintmire, J.W., White, C.T., Phys. Rev. Lett. 81, 2506 (1998) CrossRef
Kociak, M., Kasumov, A., Gueron, S., Reulet, B., Khodos, I., Gorbatov, B., Volkov, V.T., Vaccarini, L., Bouchiat, H., Phys. Rev. Lett. 86, 2416 (2001) CrossRef
Javey, A., Tu, R., Farmer, B.D., Guo, J., Gordon, R., Dai, H., Nano Lett. 5, 345 (2005) CrossRef
Kreupl, F., Graham, A.P., Duesberg, G.S., Steinhogl, W., Liebau, M., Unger, E., Honlein, W., Microelectron. Eng. 64, 399 (2002) CrossRef
Meyyappan, M., Delziet, L., Cassell, A., Hash, D., Plasma Sources Sci. Technol. 12, 205 (2003) CrossRef
Hofmann, S., Ducati, C., Kleinsorge, B., Robertson, J., Appl. Phys. Lett. 83, 135 (2001) CrossRef
Abdi, Y., Koohsorkhi, J., Mohajerzadeh, S., Darbari, S., Sanaee, Z., J. Vac. Sci. Technol. B 25, 822 (2007) CrossRef
Abdi, Y., Mohajerzadeh, S., Hoseinzadegan, H., Koohsorkhi, J., Appl. Phys. Lett. 88, 1 (2006)
Abdi, Y., Mohajerzadeh, S., Koohsorkhi, J., Robertson, M.D., Carbon 46, 1611 (2008) CrossRef
Abdi, Y., Arzi, E., Mohajerzadeh, S., Eur. Phys. J. Appl. Phys. 44, 149 (2008) CrossRef