Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T08:49:49.929Z Has data issue: false hasContentIssue false

Effect of sputtering power on structural, morphological, chemical, optical and electrical properties of Ti:Cu3N nano-crystalline thin films

Published online by Cambridge University Press:  12 December 2012

Ali Rahmati*
Affiliation:
Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran Department of Solid State Physics and Electronics, Faculty of Physics, University of Tabriz, Tabriz, Iran
Kamran Ahmadi
Affiliation:
Materials and Energy Research Centre (MERC), P.O. Box 31787/316, Karaj, Iran
Get access

Abstract

A sintered Ti13Cu87 bi-component target was sputtered by reactive DC magnetron sputtering in nitrogen ambient under various sputtering powers. Ti included Cu3N (Ti:Cu3N) thin films were deposited on Si (1 1 1), KBr (potassium bromide), quartz and glass slide substrates. Crystalline phases of the films were identified by X-ray diffraction (XRD) technique. Crystalline quality and phase stability are strongly dependent on sputtering power. Formation of copper vacancies in Cu3N cell substituted by Ti atoms and subsequent excess of interstitial nitrogen (N-rich) result in lattice constant expansion. Bonding environment in these films was obtained from fourier transform infrared (FTIR) spectroscopy. Surface morphology of the films that were studied by a scanning electron microscope (SEM) indicates a granular structure. Atomic Ti:Cu ratio of Ti:Cu3N films, determined by energy dispersive X-ray (EDX) spectroscopy, is less than that of original target. Optical study was performed by Vis-near IR transmittance spectroscopy. Film thickness, refractive index and extinction coefficient were extracted from the measured transmittance using pointwise unconstrained minimization approach. The TiCu3N films are direct semiconductor with bandgap energy with the range of 2.79–3.34 eV. Ti incorporation and subsequent N-rich have a significant role in bandgap widening and lattice constant expansion. The films electrically show quasi-metallic behavior.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borsa, D.M., Grachev, S., Boerma, D.O., IEEE Trans. Magn. 38, 2709 (2002)CrossRef
Asano, M., Umeda, K., Tasaki, A., Jpn J. Appl. Phys. 29, 1985 (1990)CrossRef
Maruyama, T., Morishita, T., Appl. Phys. Lett. 69, 890 (1996)CrossRef
Nosaka, T., Yoshitake, M., Okamoto, A., Ogawa, S., Nakayama, Y., Appl. Surf. Sci. 169, 358 (2001)CrossRef
Navio, C., Capitan, M.J., Alvarez, J., Yndurain, F., Miranda, R., Phys. Rev. B 76, 085105 (2007)CrossRef
Borsa, D.M., Boerma, D.O., Surf. Sci. 548, 95 (2004)CrossRef
Torndahl, T., Ph.D. thesis, Uppsala University, 2004
Gallardo-Vega, C., de la Cruz, W., Appl. Surf. Sci. 252, 8001 (2006)CrossRef
Soto, G., Diaz, J.A., de la Cruz, W., Mater. Lett. 57, 4130 (2003)CrossRef
Yue, G.H., Yan, P.X., Liu, J.Z., Wang, M.X., Li, M., Yuan, X.M., J. Appl. Phys. 98, 103506 (2005)CrossRef
Reddy, K.V.S., Reddy, A.S., Reddy, P.S., Uthana, S., J. Mater. Sci. Mater. Electron. 28, 1003 (2007)CrossRef
Gordillo, N., Gonzalez-Arrabal, R., Alvarez-Herrero, A., Agullo-Lopez, F., J. Phys. D: Appl. Phys. 42, 165101 (2009)CrossRef
Hadian, F., Rahmati, A., Movla, H., Khaksar, M., Vacuum 86, 1067 (2012)CrossRef
Maruyama, T., Morishita, T., J. Appl. Phys. 78, 4104 (1995)CrossRef
Kim, K.J., Kim, J.H., Kang, J.H., J. Cryst. Growth 222, 767 (2000)CrossRef
Du, Y., Ji, A.L., Ma, L.B., Wang, Y.Q., Cao, Z.X., J. Cryst. Growth 280, 490 (2005)CrossRef
Wang, J., Chen, J.T., Yuan, X.M., Wu, Z.G., Miao, B.B., Yan, P.X., J. Cryst. Growth 286, 407 (2006)CrossRef
Pierson, J.F., Vacuum 66, 59 (2002)CrossRef
Ghosh, S., Singh, F., Choudhary, D., Avasthi, D.K., Ganesan, V., Shah, P., Gupta, A., Surf. Coat. Technol. 142–143, 1034 (2001)CrossRef
Yue, G., Liu, J., Li, X., Yuan, M., Yan, P., Liu, J., Phys. Status Solidi A 202, 1987 (2005)CrossRef
Pierson, J.F., Horwat, D., Scripta Materiala 58, 568 (2008)CrossRef
Du, Y., Huang, R., Song, R., Ma, L., Liu, C., Li, C., Cao, Z., J. Mater. Res. 22, 3052 (2007)CrossRef
Fan, X., Wu, Z., Li, H., Geng, B., Li, C., Yan, P., J. Phys. D: Appl. Phys. 40, 3430 (2007)CrossRef
Hahn, U., Weber, W., Phys. Rev. B 53, 12684 (1996)CrossRef
Rahmati, A., Vacuum 85, 853 (2011)CrossRef
Rahmati, A., Bidadi, H., Ahmadi, K., Hadian, F., JCT Res. 8, 289 (2011)
Pierson, J.F., Wiederkehr, D., Billard, A., Thin Solid Films 478, 196 (2005)CrossRef
Kim, I.S., Kumta, P.N., Mater. Sci. Eng. B 98, 123 (2003)CrossRef
Ghosh, S.K., Grover, A.K., Dey, G.K., Totlani, M.K., Surf. Coat. Technol. 126, 48 (2000)CrossRef
Moreno-Armenta, M.G., Perez, W.L., Takeuchi, N., Solid State Sci. 9, 166 (2007)CrossRef
Klug, H.P., Alexander, L.E., X-ray Diffraction Procedure for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)Google Scholar
Behrisch, R., Eckstein, W., Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies (Springer, London, 2007)Google Scholar
Yamamura, Y., Takiguchi, T., Ishida, M., Radiat. Eff. Defects Solids 118, 237 (1991)CrossRef
Delfino, M., Fair, J.A., Hodul, D., J. Appl. Phys. 71, 6079 (1992)CrossRef
Birgin, E.G., Chambouleyron, I., Martínez, J.M., J. Comput. Phys. 151, 862 (1999)CrossRef
Poelman, D., Smet, P.F., J. Phys. D: Appl. Phys. 36, 1850 (2003)CrossRef
Singh, J., Optical Properties of Condensed Matter and Applications (John Willey & Sons, Chichester, 2006)CrossRefGoogle Scholar
Patterson, J., Bailey, B., Solid-State Physics: Introduction to the Theory, 2nd edn. (Springer, 2010)CrossRef
Peled, A., Photo-Excited Processes, Diagnostics and Applications (Kluwer, Boston, MA, 2003)Google Scholar
Wang, Z., Cohen, S.A., Ruzic, D.N., Goeckner, M.J., Phys. Rev. E 61, 1904 (2000)CrossRef