Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T20:49:08.421Z Has data issue: false hasContentIssue false

Effect of Sn concentration on optical and structural properties of Pb1-xSnxS nanopowder

Published online by Cambridge University Press:  08 August 2014

Rahim Lotfi Orimi*
Affiliation:
Department of Physics, University of Golestan, Gorgan 49138-15739, Iran
Hasan Khandan Fadafan
Affiliation:
Department of Physics, University of Golestan, Gorgan 49138-15739, Iran
Alameh Asadpour
Affiliation:
Department of Physics, University of Golestan, Gorgan 49138-15739, Iran
*
Get access

Abstract

Pb1-xSnxS nanopowder with different Sn concentrations (x = 0.02, 0.05, 0.10, 0.20, 0.50 and 1.00) were synthesized by chemical precipitation route under N2 atmosphere. The samples were characterized by X-ray diffraction(XRD), UV-vis absorption spectra and photoluminescence (PL) spectra. The XRD results show that the samples with 0 ≤ x ≤ 0.2 have cubic (fcc) structure with diameter in the 12.8–24 nm range. The sample with x = 0.5 has orthorhombic structure with a diameter of 9.2 nm. The band gap (or absorption edge) of PbS exhibits a large blue shift when the crystallite size is reduced to nanometer scale, from 0.4 eV in bulk samples to 1.8 eV in nanosize samples, which can be related to large Bohr excitonic radius of PbS nanoparticles. PL emission spectra of Pb1-xSnxS in red region excited at 315 nm, for x = 0 showed three broad peaks located at 776.5 nm, 809 nm and 826 nm which due to the defect densities and for x = 0.02, 0.05, 0.10 there are two relatively strong emission peaks located at 786 nm and 823 nm which can be related to transition from sulfur vacancy level and Sn+2 ion level respectively.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eibelhuber, M., Schwarzl, T., Pichler, S., Heiss, W., Springholz, G., Appl. Phys. Lett. 97, 061103 (2010)CrossRef
Khiar, A., Rahim, M., Fill, M., Felder, F., Hobrecker, F., Zogg, H., Appl. Phys. Lett. 97, 151104 (2010)CrossRef
Arnold, M., Zimin, D., Zogg, H., Appl. Phys. Lett. 87, 141103 (2005)CrossRef
Zogg, H., Arnold, M., Felder, F., Rahim, M., Ebneter, C., Zasavitskiy, I., Quack, N., Blunier, S., Dual, J., J. Electron. Mater. 37, 1497 (2008)CrossRef
Schwarzl, T., Springholz, G., Böberl, M., Kaufmann, E., Roither, J., Heiss, W., Fürst, J., Pascher, H., Appl. Phys. Lett. 86, 031102 (2005)CrossRef
Abramof, E., de Andrada e Silva, E.A., Ferreira, S.O., Motisuke, P., Rappl, P.H.O., Ueta, A.Y., Phys. Rev. B 63, 085304 (2001)CrossRef
Dmitriev, A.V., Zvyagin, I.P., Phys. Uspekhi 53, 789 (2010)CrossRef
Ma, W., Luther, J.M., Zheng, H.M., Wu, Y., Alivisatos, A.P., Nano Lett. 9, 4 (2009)
Onicha, A.C., Petchsang, N., Kosel, T.H., Kuno, M., ACS Nano 6, 3 (2012)CrossRef
Smith, D.K., Luther, J.M., Semonin, O.E., Nozik, A.J., Beard, M.C., ACS Nano 5, 1 (2011)CrossRef
Maikov, G.I., Vaxenburg, R., Sashchiuk, A., Lifshitz, E., ACS Nano 4, 11 (2010)CrossRef
Liu, X., Li, Y., Zhou, B., Wang, D., Cartwright, A.N., Swihart, M.T., Chem. Mater. 25, 21 (2013)
Soriano, R.B., Malliakas, C.D., Wu, J.S., Kanatzidis, M.G.J., J. Am. Chem. Soc. 134, 62013 (2012)CrossRef
Gremenok, V.F., Rud, V.Yu., Rud, Yu.V., Bashkirov, S.A., Ivanov, V.A., Semiconductors 45, 8 (2011)CrossRef
Thangaraju, B., Kaliannan, P., Cryst. Res. Technol. 35, 1 (2000)3.0.CO;2-U>CrossRef
Unuchak, D.M., Bente, K., Ivanov, V.A., Gremenok, V.F., Cryst. Res. Technol. 45, 1113 (2010)CrossRef
Unuchak, D.M., Bente, K., Kloess, G., Schmitz, W., Gremenok, V.F., Ivanov, V.A., Ukhov, V., Phys. Stat. Sol. C 5, 1191 (2009)CrossRef
Zimin, S.P., Gorlachev, E.S., Amirov, I.I., Zogg, H., Abramof, E., Rapp, P.H.O., Semicond. Sci. Technol. 26, 105003 (2011)CrossRef
Wei, H., Su, Y.J., Chen, S.Z., Lin, Y., Yang, Z., Sun, H., Zhang, Y.F., Cryst. Eng. Comm. 13, 22 (2012)
Maikov, G.I., Vaxenburg, R., Sashchiuk, A., Lifshitz, E., ACS Nano 4, 11 (2011)
Kayanuma, Y., Phys. Rev. B 38, 9797 (1988)CrossRef
Brus, L., J. Phys. Chem. 90, 2555 (1986)CrossRef
Beheta, S.N., Sahu, S.N., Nanda, K.K., Ind. J. Phys. A 74, 81 (2000)
Chowdhury, S., Hussain, A.M.P., Ahmed, G.A., Mohanta, D., Choudhury, A., Semicond. Phys. Quant. Electron. Optoelectron. 9, 45 (2006)
Kumar, D., Agarwal, G., Tripathi, B., Vyas, D., Kulshrestha, V., J. Alloys Compd. 484, 463 (2009)CrossRef
Bakueva, L., Musikhin, S., Hines, M.A., Chang, T.-W.F., Tzolov, M., Scholes, G.D., Sargent, E.H., Appl. Phys. Lett. 82, 2895 (2003)CrossRef
Patel, A.A., Wu, F.X., Zhang, J.Z., Torres-Martinez, C.L., Mehra, R.K., Yang, Y., Risbud, S.H., J. Phys. Chem. B 104, 11598 (2000)CrossRef
Koao, L.F., Dejene, F.B., Swart, H.C., Int. J. Electrochem. Sci. 9, 1747 (2014)
Cheraghizade, M., Yousefi, R., Jamali-Sheini, F., Sa’aedi, A., J. Telecom. Dev. 1, 3 (2012)
Navaneethan, M., Nisha, K.D., Ponnusamy, S., Muthamizhchelvan, C., Rev. Adv. Mater. Sci. 21, 217 (2009)