Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T11:30:22.463Z Has data issue: false hasContentIssue false

Effect of interface-dependent crystalline boundary on sub-threshold characteristics in a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistor

Published online by Cambridge University Press:  24 March 2014

Jin-Hyuk Kwon
Affiliation:
School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
In Man Kang
Affiliation:
School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
Jin-Hyuk Bae*
Affiliation:
School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
*
Get access

Abstract

We demonstrate how the sub-threshold characteristics are affected by the density of crystalline domain boundaries directly governed by an organic semiconductor (OSC) – a gate insulator interface in a solution-processed 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) thin-film transistor (TFT). For generation of an engineered interface, a self assembled monolayer of octadecyltricholorosilane (OTS) was produced between a solution processed TIPS-pentacene film and a silicon dioxide layer. The interfacial charge trap density (Ntrap) deduced from the sub-threshold characteristics was significantly minimized after OTS treatment due to reduced crystal domain boundaries in the TIPS-pentacene film. In addition, the carrier mobility exhibits a value twice as large by OTS treatment. It is found that less crystal domain boundaries in the solution-processed OSC obtained from the engineered interface play an important role in inducing improved sub-threshold characteristics together with increased carrier mobility in organic TFTs.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dimitrakopoulos, C.D., Malenfant, P.R.L., Adv. Mater. 25, 99 (2002)3.0.CO;2-9>CrossRef
Klauk, H., Halik, M., Zshieschang, U., Eder, F., Schmid, G., Dehm, C., Appl. Phys. Lett. 82, 4175 (2003)CrossRef
Guo, Y., Yu, G., Liu, Y., Adv. Mater. 22, 4427 (2010)CrossRef
Seo, S.-H., Nam, W.-S., Park, J.-G., J. Semicond. Technol. Sci. 8, 40 (2008)CrossRef
Wei, C.-Y., Kuo, S.-H., Hung, Y.-M., Huang, W.-C., Adriyanto, F., Wang, Y.-H., IEEE Electron. Device Lett. 32, 90 (2011)CrossRef
Gerwin, H., Huiteman, H.E.A., Veenendaal, E.V., Cantatore, E., Schrijnemakers, L., van der Putten, J.B.P.H., Geuns, T.C.T., Beehakkers, M., Giesbers, J.B., Juisman, B.-H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J.E., de Leeuw, D.M., Nat. Mater. 3, 106 (2004)
He, Z., Chen, J., Sun, Z., Szulczewski, G., Li, D., Org. Electron. 13, 1819 (2012)CrossRef
Akkerman, H.B., Li, H., Bao, Z., Org. Electron. 13, 2056 (2012)CrossRef
Kwon, J.-H., Seo, J.-H., Shin, S.-I., Kim, J.-H., Choi, D.H., Kang, I.B., Kang, H., Ju, B.K., IEEE Trans. Electron Devices 55, 500 (2008)CrossRef
Shin, S.-I., Kwon, J.-H., Kang, H., Ju, B.-K., Semicond. Sci. Technol. 23, 085009 (2008)CrossRef
Bae, J.-H., Park, J., Keum, C.-M., Kim, W.-H., Kim, M.-H., Kim, S.-O., Kwon, S.K., Lee, S.-D., Org. Electron. 11, 784 (2010)CrossRef
Keum, C.-M., Bae, J.-H., Kim, W.-H., Kim, M.-H., Park, J., Lee, S.-D., J. Korean Phys. Soc. 58, 1479 (2011)
Lim, J.A., Lee, W.H., Lee, H.S., Lee, J.H., Park, Y.D., Cho, K., Adv. Funct. Mater. 18, 229 (2008)CrossRef
Shin, S.-I., Kwon, J.-H., Kang, H., Ju, B.-K., Semicond. Sci. Technol. 23, 085009 (2008)CrossRef
He, Z., Chen, J., Sun, Z., Szulczewski, G., Li, D., Org. Electron. 13, 1819 (2012)CrossRef
Chae, G.J., Jeong, S.-H., Baek, J.H., Walker, B., Song, C.K., Seo, J.H., J. Mater. Chem. C 1, 4216 (2013)CrossRef
Lee, S.H., Choi, M.H., Han, S.H., Choo, D.J., Jang, J., Kwon, S.K., Org. Electron. 9, 721 (2008)CrossRef
Sheraw, C.D., Jackson, T.N., Eaton, D.L., Anthony, J.E., Adv. Mater. 15, 2009 (2003)CrossRef
Guo, D., Sakamoto, K., Miki, K., Ikeda, S., Saiki, K., Appl. Phys. Lett. 90, 102117 (2007)CrossRef
Dinelli, P.F., Murgia, M., Levy, P., Cavallini, M., Biscarini, F., de Leeuw, D. M., Phys. Rev. Lett. 92, 116802 (2004)CrossRef
Bae, J.-H., Kim, W.-H., Kim, H., Lee, C., Lee, S.-D., J. Appl. Phys. 102, 063508 (2007)CrossRef
Dinelli, F., Murgia, M., Levy, P., Cavallini, M., Biscarini, F., de Leeuw, D.M., Phys. Rev. Lett. 92, 116802 (2004)CrossRef
Choi, J.B., Yun, D.C., Park, Y.I., Kim, J.H., J. Non-Cryst. Solids 266, 1315 (2000)CrossRef
Bae, J.-H., Choi, Y., Surf. Interface Anal. 44, 445 (2012)CrossRef
Scheinert, S., Passch, G., Schrödner, M., Roth, H.-K., Sensfuß, S., Th. Doll, J. Appl. Phys. 92, 330 (2002)CrossRef
Wang, A., Kymissis, I., Bulovic, V., Akinwande, A.I., IEEE Trans. Electron Devices 53, 9 (2006)CrossRef
Sze, S.M., Semiconductor Devices (Wiley, New York, 1985)Google Scholar
Ruiz, R., Papadimitratos, A., Mayer, A.C., Malliaras, G.G., Adv. Mater. 17, 1795 (2005)CrossRef
Boudinet, D., Benwadih, M., Altazin, S., Gwoziecki, R., Verilhac, J.M., Coppard, R., Blevennec, G.L., Chartier, I., Horowitz, G., Org. Electron. 11, 291 (2010)CrossRef