Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T02:36:44.518Z Has data issue: false hasContentIssue false

Effect of Ar annealing temperature on SiO2/SiC:SiO2 densification change causing leakage current reduction

Published online by Cambridge University Press:  30 April 2013

Zhi Qin Zhong*
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Zi Jiao Sun
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Shu Ya Wang
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Li Ping Dai
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Guo Jun Zhang
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
*
Get access

Abstract

The authors investigated the effects of annealing in Ar atmosphere at different temperatures (350–1100 °C) on the densification and leakage current characteristics of thermally oxidized SiO2 films on n-type 4H-SiC. A strong correlation between densification improvement and leakage current reduction was observed. Densification of the SiO2 films, which were characterized by spectroscopic ellipsometry, Fouriertransform infrared spectroscopy and atomic force microscopy, can be significantly improved after annealing at moderate temperature (600 °C). The leakage current is decreased by two orders of magnitude of the SiO2 thin film after annealing at 600 °C. Based on the studies, SiO2 film of the highest quality can be obtained after annealing at 600 °C. Improvements in the quality of the SiO2 thin films after annealing at 600 °C may be explained by the consumption and formation of carbon-related and oxygen-related defects during annealing.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Knaup, J.M., Deák, P., Frauenheim, T., Gali, A., Hajnal, Z., Choyke, W.J., Phys. Rev. B 71, 235321 (2005)CrossRef
Di Ventra, M., Pantelides, S.T., Phys. Rev. Lett. 83, 1624 (1999)CrossRef
Wang, S., Di Ventra, M., Kim, S.G., Pantelides, S.T., Phys. Rev. Lett. 86, 5946 (2001)CrossRef
Chang, K.C., Nuhfer, N.T., Porter, L.M., Wahab, Q., Appl. Phys. Lett. 77, 2186 (2000)CrossRef
Lu, W., Feldman, L.C., Song, Y., Dhar, S., Collins, W.E., Mitchell, W.C., Appl. Phys. Lett. 85, 3495 (2004)CrossRef
Gong, M., Yuan, J., Wang, H.Y., Weng, H.M., Chen, X.D., Fung, S., Beling, C.D., E-MRS Fall Meeting, Symposium C, (2004)Google Scholar
Yuan, J., Gong, M., Wang, H.Y., Weng, H.M., J. Sichuan University (Natural Science Edition) 47, 331 (2010)
Yoshikawa, M., Seki, H., Inoue, K., Matsuda, K., Tanahashi, Y., Sako, H., Nanen, Y., Kato, M., Kimoto, T., Appl. Spectrosc. 65, 543 (2011)CrossRef
Okuno, E., Sakakibara, T., Onda, S., Itoh, M., Uda, T., Phys. Rev. B 79, 113302 (2009)CrossRef
Soares, G.V., Baumvol, I.J.R., Corrêa, S.A., Radtke, C., Stedile, F.C., Appl. Phys. Lett. 95, 191912 (2009)CrossRef
Chen, Z., Appl. Phys. Lett. 91, 223513 (2007)
Chen, Z., Ong, P.-L., Wang, Y.C, Han, L., Appl. Phys. Lett. 100, 171602 (2012)
Chen, Z., Ong, P.L., Wang, Y.C., J. Electochem. Soc. 157, G44 (2010)CrossRef
Rzodkiewicz, W., Panas, A., Acta Phys Pol A 116, S92 (2009)CrossRef
Herzinger, C.M., Snyder, P.G., Johs, B., Woollam, J.A., J. Appl. Phys. TT 77, 1715 (1995)CrossRef
Iida, T., Tomioka, Y., Hijikata, Y., Yaguchi, H., Yoshikawa, M., Ishida, Y., Okumura, H., Yoshida, S., Jpn J. Appl. Phys. 39, L1054 (2000)CrossRef
Golz, A., Horstman, G., Stein von Kamienski, E., Kurz, H., in Proceedings of the Sixth International Conference on Silicon Carbide and Related Materials, Kyoto, 1995, edited by Nakashima, S. (IOP Publishing, Bristol, UK, 1996), p. 633Google Scholar
Kitamura, N., Fukumi, K., Nishii, J., Ohno, N., J. Appl. Phys. 101, 123533 (2007)CrossRef
Taniguchi, K., Tanaka, M., Hamaguchi, C., J. Appl. Phys. 67, 2195 (1990)CrossRef
Wisniewski, P., Knap, W., Malzac, J.P., Camassel, J., Bremser, M.D., Davis, R.F., Suski, T., Appl. Phys. Lett. 73, 1760 (1998)CrossRef
Galeener, F.L., Barrio, R.A., Martinez, E., Elliott, R.J., Phys. Rev. Lett. 17, 2429 (1984)CrossRef
Knaup, J.M., Deák, P., Frauenheim, Th., Gali, A., Hajnal, Z., Choyke, W.J., Phys. Rev. B 72, 115323 (2005)CrossRef
Nagai, N., Terada, K., Muraji, Y., Hashimoto, H., Maeda, T., Maeda, Y., Tahara, E., Tokai, N., Hatta, A., J. Appl. Phys. 87, 4747 (2002)CrossRef
Devine, R.A.B., Appl. Phys. Lett. 68, 3108 (1996)CrossRef
Onoa, H., Ikarashi, T., Ando, K., Kitano, T., J. Appl. Phys. 84, 6064 (1998)CrossRef
Queeney, K.T., Weldon, M.K., Chang, J.P., Chabal, Y.J., Gurevich, A.B., Sapjeta, J., Opila, R.L., J. Appl. Phys. 87, 1322 (2000)CrossRef
Nagai, N., Hashimoto, H., Appl. Surf. Sci. 172, 307 (2001)CrossRef
Stuart, B.H., in Infrared Spectroscopy: Fundamentals and Applications, edited by Ando, D.J. (Analytical Techniques in the Sciences, 2004)CrossRefGoogle Scholar
Hornetz, B., Michel, H.-J., Halbritter, J., J. Mater. Res. 9, 3088 (1994)CrossRef
Milella, A., Creatore, M., Blauw, M.A., van de Sanden, M.C.M., Plasma Process Polym. 4, 621 (2007)CrossRef