Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T16:48:11.694Z Has data issue: false hasContentIssue false

Effect of annealing copper phthalocyanine on the performance of interdigitated bulk-heterojunction organic photovoltaic cells

Published online by Cambridge University Press:  09 May 2012

N.N. Wang
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
J.S. Yu*
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
Z.L. Yuan
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
Y.D. Jiang
Affiliation:
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P.R. China
*
Get access

Abstract

Organic photovoltaic (OPV) cells with improved efficiency using thermal annealing-induced nanostructured copper phthalocyanine as a donor layer were fabricated. A power conversion efficiency of 1.47% in the OPV cell with interdigitated CuPc/C60 bulk heterojunction has been obtained under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which is higher than 0.63% of CuPc/C60 planar cell. Through varying the annealing temperature of CuPc films, the influence of interface morphology and crystallinity of CuPc films on the performance of OPV cells was systematically studied. Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and spectrophotometry were used to characterize the CuPc films. The results showed that at an optimal annealing temperature, the crystalline nature and vertical orientation of nanostructured CuPc have been modified, which can facilitate the separation of interfacial electron-hole pairs and charge carrier transport to electrodes.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., Heeger, A.J., Science 317, 222 (2007)CrossRef
Yang, Y., Wudl, F., Adv. Mat. 21, 1401 (2009)CrossRef
Nielsen, T.D., Cruickshank, C., Foged, S., Thorsen, J., Krebs, F.C., Sol. Energy Mater. Sol. Cells 94, 1553 (2010)CrossRef
Price, S.C., Stuart, A.C., Yang, L.Q., Zhou, H.X., You, W., J. Am. Chem. Soc. 133, 4625 (2011)CrossRef
Tang, C.W., Appl. Phys. Lett. 48, 183 (1986)CrossRef
Sariciftci, N.S., Smilowitz, L., Heeger, A.J., Wudl, F., Science 258, 1474 (1992)CrossRef
Peumans, P., Uchida, S., Forrest, S.R., Nature 425, 158 (2003)CrossRef
Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., Science 270, 1789 (1995)CrossRef
Liang, Y.Y, Xu, Z., Xia, J.B., Tsai, S.T., Wu, Y., Li, G., Ray, C., Yu, L.P., Adv. Mat. 22, E135 (2010)CrossRef
Chen, H.Y., Hou, J.H., Zhang, S.Q., Liang, Y.Y., Yang, G.W., Yang, Y., Yu, L.P., Wu, Y., Li, G., Nature Photon. 3, 649 (2009)CrossRef
Service, R.F., Science 332, 293 (2011)CrossRef
Yang, F., Shtein, M., Forrest, S.R., Nat. Mater. 4, 37 (2005)CrossRef
Xi, H.X., Wei, Z.M., Duan, Z.M., Xu, W., Zhu, D.B., J. Phys. Chem. C 112, 19934 (2008)CrossRef
Karak, S., Ray, S.K., Dhar, A., J. Phys. D: Appl. Phys. 43, 245101 (2010)CrossRef
Hsiao, Y.S., Whang, W.T., Suen, S.C., Shiu, J.Y., Chen, C.P., Nanotechnology 19, 415603 (2008)CrossRef
Van Dijken, J.G., Fleischauer, M.D., Brett, M.J., IEEE PVSC 33, 1222 (2008)
Zheng, Y., Bekele, R., Ouyang, J.M., Xue, J.G., Org. Electron. 10, 1621 (2009)CrossRef
Wang, N.N., Yu, J.S., Zang, Y., Huang, J., Jiang, Y.D., Sol. Energy Mater. Sol. Cells 94, 263 (2010)CrossRef
Karan, S., Mallik, B., Solid State Commun. 143, 289 (2007)CrossRef
Jungyoon, E., Kim, S., Lim, E., Lee, K., Cha, D., Friedman, B., Appl. Surf. Sci. 205, 274 (2003)
Mack, J., Stillman, M.J., Inorg. Chem. 40, 812 (2001)CrossRef
Misra, T.N., Rev. Pure Appl. Chem. 15, 39 (1965)
Nelson, J., The Physics of Solar Cells (Imperial College Press, London, 2003), p. 384CrossRefGoogle ScholarPubMed
Lozzi, L., Santucci, S., La Rosa, S., Delley, B., Picozzi, S., J. Chem. Phys. 121, 1883 (2004)CrossRef
Choe, Y., Park, S.Y., Park, D.W., Kim, W., Macromol. Res. 14, 38 (2006)CrossRef
Rand, B.P., Xue, J.G., Uchida, S., Forrest, S.R., J. Appl. Phys. 98, 124902 (2005)CrossRef