Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-07T14:25:42.211Z Has data issue: false hasContentIssue false

Domain integral representation vs. homogenization methodsfor the analysis of photonic band gaps and absorbers*

Published online by Cambridge University Press:  15 April 1999

H. Roussel*
Affiliation:
Département de Recherche en Électromagnétisme (LSS/CNRS-Supélec), Supélec, Plateau de Moulon, 91192 Gif-sur-Yvette, France
W. Tabbara
Affiliation:
Département de Recherche en Électromagnétisme (LSS/CNRS-Supélec), Supélec, Plateau de Moulon, 91192 Gif-sur-Yvette, France
Get access

Abstract

The reflectivity of two-dimensional pyramidal absorbers and the transmittance of photonic crystals made of dielectric fibers is analyzed by means of two approaches. In the first one an integral representation of the scattered field is used and the absorbers are modeled by a stack of gratings of infinite extent. In the second approach, the absorbers and the crystal are replaced by an equivalent multilayered medium obtained by means of two homogenization methods. We assess the efficiency of these methods with respect to parameters such as the density of the gratings, their relative permittivity and the polarization of the incident wave.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was presented at the PIERS 98 conference (Progress in Electromagnetics Research Symposium) held at Nantes (France), July 13-17, 1998.

References

Brown, E.R., Agi, K., Dill III, C., Parker, C.D., Malloy, K.J., Microw. Optic. Techn. lett. 7, 777 (1994). CrossRef
Maystre, D., Pure Appl. Optic 3, 975 (1994). CrossRef
Reineix, A., Jecko, B., Ann. Télécom. 51, 656 (1996).
Bullock, D.L., Chun-Chin Shih, R.S. Margulies, J. Opt. Soc. Am. B 10, 399 (1993). CrossRef
Agi, K., Brown, E.R., McMahon, O.B., Dill III, C., Malloy, K.J., Electr. Lett. 30, 2166 (1994). CrossRef
Guida, G., Maystre, D., Tayeb, G., Vincent, P., J. Electromagn. Wav. Appl. 12, 1153 (1998). CrossRef
Roussel, H., Jouvie, F., Tabbara, W., J. Electromagn. Wav. Appl. 11, 1303 (1990).
Bell, J.M., Derrick, G.H., McPhedran, R.C., Optica Acta 29, 1475 (1982). CrossRef
Kuester, E.F., Holloway, C.L., IEEE Trans. Microw. Theor. Techni. 38, 1752 (1990). CrossRef
Holloway, C.L., Delyser, R.R., German, R.F., McKenna, P., Kanda, M., IEEE Trans. Electromagn. Comp. 39, 33 (1997). CrossRef
Chang-Fa Yang, W.D. Burnside, R.C. Rudduck, IEEE Trans. Ant. Prop. 41, 600 (1993). CrossRef
Janaswamy, R., IEEE Trans. Ant. prop. 40, 162 (1992). CrossRef
Kuester, E.F., Holloway, C.L., IEEE Trans. Electromagn. Comp. 36, 300 (1994). CrossRef
Holloway, C.L., Kuester, E.F., IEEE Trans. Electromagn. Comp. 36, 307 (1994). CrossRef
Roussel, H., Tabbara, W., J. Electromagn. Wav. Appl. 11, 1703 (1997). CrossRef
Hashin, Z., Shtrikman, S., J. Appl. Phys. 33, 3125 (1962). CrossRef