Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T17:04:22.465Z Has data issue: false hasContentIssue false

Direct comparison of simplified models of surface reacting flows in flow chambers

Published online by Cambridge University Press:  07 April 2004

P.-Y. Lagrée*
Affiliation:
Lab. de Modélisation en Mécanique, UMR CNRS 7607, Boîte 162, Université Paris 6, 4 place Jussieu, 75252 Paris, France
A. Ivan-Fernolendt
Affiliation:
Department of Mathematics, University of the West Timisoara, Bv. V. Parvan, nr. 4, 1900, Timisoara, Romania
Get access

Abstract

In this paper a steady laminar 2D Poiseuille flow between two plates with chemical reactions on the upper wall is considered. This is a typical configuration in flow chambers (like the BIACORE one), which are used for the determination of the rate constants of reversible reactions between biological macromolecules. As the chamber thickness is small compared to its length, simplifications are possible, so, some asymptotic limits of mass conservation equation coupled with the wall chemistry are presented. We obtain a system with a large Péclet number. The small effects of the flow on the chemical reaction, which depend on the combination of the Damköhler and Péclet numbers, are highlighted. The results of these equations are favorably cross compared with the asymptotic (Lévêque) solution or with the simplified solutions (integral methods) found in the literature. The final result is that, due to the fact that the exchange coefficient is shown to be nearly constant, the simplified integral method is derived in a more rigorous way and its area of use is improved.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Back, L.H., Math. Biosci. 25, 273 (1975) CrossRef
BIACORE manual (undated): BIACORE TM System Manual Version 1.1, Uppsala: BIACORE, Inc
Canziani, G., Zhang, W., Cines, D., Methods 19, 253 (1999) CrossRef
T. David, S. Thomas, P.G. Walker, Models of platelet deposition in stagnation point flow, presented at the Fourth International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, Oct., 1999, pp. 13–16
T. David, P.G. Walker, Activation and extinction Models for Platelet adhesion, 4th Euromech Fluid Mech Conf., 19-23 Nov. 2000, Eindhoven
Edwards, D.A., IMA J. Appl. Math. 63, 89 (1999) CrossRef
Edwards, D.A., Goldstein, B., Cohen, D.S., J. Math. Biol. 39, 533 (1999)
B. de Bruin, Numerical simulation of bloodflow through straight stenotic vessels, report Rijks Universiteit Groningen/Université Paris VI, 2000
C.A.J. Fletcher, Computational techniques for fluid dynamics (Springer Verlag, 1991), Vol. II
K. Gersten, H. Herwig, Strömungsmechanik (Ed. Viewig, 1992)
N.A. Hill, M.K. Spendiff, Blood flow and atherosclerosis, 4th Euromech Fluid Mech Conf., 19-23 Nov. 2000, Eindhoven
Karlsson, R., Roos, H., Fägerstam, L., Persson, B., Meth. Enzymol. 6, 99 (1994) CrossRef
P.-Y. Lagrée, Arch. Physiol. Biochem. 106 (Suppl. B), 42 (1998)
Lagrée, P.-Y., Int. J. Heat Mass Transfer 42, 2509 (1999) CrossRef
Lagrée, P.-Y., Eur. Phys. J. Appl. Phys. 9, 153 (2000) CrossRef
Lagrée, P.-Y., Lorthois, S., Arch. Physiol. Biochem. 107, 51 (1999)
A. Leontiev, Théorie des échanges de chaleur et de masse, reprint of Russian ed., 1979 (Moscow, ed. MIR, 1985), 565 p.
S. Lorthois, Effet de la contrainte de cisaillement pariétale sur la fragmentation des caillots de fibrine. Étude expérimentale et théorique appliquée aux sténoses carotidiennes, Ph.D. thesis, 1999
S. Lorthois, P.-Y. Lagrée, C.R. Acad. Sci. Paris 328 (Sér. II b), 33 (2000)
B. Lucquin, O. Pironneau, Introduction au calcul scientifique (Masson, 1996), p. 380
Myszka, D.G., He, X., Dembo, M., Morton, T.A., Goldstein, B., Biophys. J. 75, 583 (1998) CrossRef
O'Shannessy, D.J., Brigham-Burke, M., Soneson, K.K., Hensley, P., Brooks, I., Meth. Enzymol. 240, 323 (1994) CrossRef
T.J. Pedley, The fluid mechanics of large blood vessels (Cambridge University press, 1980)
R. Peyret, T.D. Taylor, Computational Fluid Dynamic (Springer Verlag, 1983)
Saintlos, S., Mauss, J., Int. J. Eng. Sci. 34, 201 (1996) CrossRef
H. Schlichting, Boundary layer theory, 7th edn. (Mc Graw Hill, 1987)
Schuck, P., Annu. Rev. Biophys. Biomol. Struct. 26, 541 (1997) CrossRef
Siegel, J.M., Markou, C.P., Ku, D.N., Hanson, S.R., ASME J. Biomech. Eng. 116, 446 (1994) CrossRef
F.T. Smith, Q. J. Mech. Appl. Math. 29, 343; 365 (1976)
M. Van Dyke, Perturbation methods in fluid mechanics (The Parabolic press, Standford, 1962)