Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T07:01:48.274Z Has data issue: false hasContentIssue false

Dielectric and rheological properties of polyaniline organic dispersions

Published online by Cambridge University Press:  03 April 2009

N. Bohli*
Affiliation:
Laboratoire de Nanomatériaux et des Systèmes pour l'Énergie, Centre de Recherches et de Technologies de l'Énergie, Technopole de Borj Cedria, BP 95, 2050 Hammam Lif, Tunisia Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, ENSCPB, 16 av. Pey Berland, 33607 Pessac, France
A. Belhadj Mohamed
Affiliation:
Laboratoire de Nanomatériaux et des Systèmes pour l'Énergie, Centre de Recherches et de Technologies de l'Énergie, Technopole de Borj Cedria, BP 95, 2050 Hammam Lif, Tunisia
V. Vignéras-Lefèbvre
Affiliation:
Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, ENSCPB, 16 av. Pey Berland, 33607 Pessac, France
J.-L. Miane
Affiliation:
Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, ENSCPB, 16 av. Pey Berland, 33607 Pessac, France
Get access

Abstract

This paper reports the examination of the evolution of polyaniline-organic solvent interactions in the temperature range of 294–353 K. For this purpose, rheological and dielectric investigations have been undertaken for dispersions of plast-doped polyaniline in two different solvents (dichloroacetic acid and formic acid/dichloroacetic acid mixture). Dielectric permittivity has been investigated using the open ended coaxial line method in the frequency range of [100 MHz, 10 GHz]. Dielectric loss spectra of both dispersions showed a relaxation peak which was well fitted by Havriliak-Negami function. The relaxation was attributed to a Maxwell Wagner Sillars relaxation within polyaniline clusters. The difference found between relaxation parameters of the pure solvent and polyaniline dispersions was attributed to the solvent/polyaniline interactions. The relaxation time relative to the PANI/DCAA dispersion followed an Arrhenius law. While a Vogel-Fulcher-Tammann law was found for the relaxation time of PANI/DCAA-FA dispersion.Above a certain temperature, 318 K for PANI/DCAA and 313 K for PANI/DCAA-FA, the rheological parameters of the dispersions changed, thus indicating a morphological change of polyaniline in the dispersion. In the same range of temperature, α and β relaxation parameters undergo significant changes. Those changes in dielectric and rheological parameters seem to be related to a structural change occurring in the polyaniline organic dispersion systems while increasing temperature. An interesting correlation between permittivity and viscosity was obtained.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

MacDiarmid, A.G., Angew. Chem. Int. Ed. 40, 2581 (2001) 3.0.CO;2-2>CrossRef
Cao, Y., Smith, P., Heeger, A.J., Synth. Met. 48, 91 (1992) CrossRef
Cao, Y., Qiu, J., Smith, P., Synth. Met. 69, 187 (1995) CrossRef
MacDiarmid, A.G., Epstein, A.J., Synth. Met. 65, 103 (1994) CrossRef
MacDiarmid, A.G., Epstein, A.J., Synth. Met. 69, 85 (1995) CrossRef
Ikkala, O.T., Pietilä, L.O., Passiniemi, P., Vikki, T., Österholm, H., Ahjopalo, L., Österholm, J. E., Synth. Met. 84, 55 (1997) CrossRef
Avlyanov, J.K., Min, Y., MacDiarmid, A.G., Epstein, A.J., Synth. Met. 72, 65 (1995) CrossRef
Trznadel, M., Rannou, P., Synth. Met. 101, 842 (1999) CrossRef
Angelopoulos, M., Dipietro, R., Zheng, W.G., MacDiarmid, A.G., Epstein, A.J., Synth. Met. 84, 35 (1997) CrossRef
Gmati, F., Fattoum, A., Bohli, N., Dhaoui, W., Belhadj Mohamed, A., J. Phys.: Condens. Matter 19, 13 (2007)
Nguyen, T.Q., Martini, I.B., Liu, J., Schwartz, B.J., J. Phys. Chem. B 104, 237 (2000) CrossRef
Oh, E.J., Min, Y., Wiesinger, J.M., Manohar, S.K., Scherr, E.M., Prest, P.J., MacDiarmid, A.G., Epstein, A.J., Synth. Met. 55, 977 (1993) CrossRef
Shi, Y., Liu, J., Yang, Y., J. Appl. Phys. 87, 4254 (2000) CrossRef
Nguyen, T.Q., Yee, R.Y., Schwartz, B.J., J. Photochem. Photobiol. A: Chem. 144, 21 (2001) CrossRef
Makela, T., Jussila, S., Vilkman, M., Kosonen, H., Korhonen, R., Synth. Met. 135-136, 41 (2003) CrossRef
Jain, R., Gregory, R.V., Synth. Met. 74, 263 (1995) CrossRef
A. Ajji, P. Sammut, M.M. Dumoulin, E. Bellefleur, L. Boutin, in ANTEC'94, San Francisco, 1–5 May 1994, pp. 918–922
J.L. Miane, in C. R. 6es Journées Nationales sur les Matériaux Composites, Paris, 11-13 Oct. 1988, pp. 51–59
Kotsilkova, R., Nesheva, D., Nedkov, I., Krusteva, E., Stavrev, S., J. Appl. Polym. Sci. 92, 2220 (2004) CrossRef
Olinga, T.E., Fraysse, J., Travers, J.P., Dufresne, A., Pron, A., Macromolecules 33, 2107 (2000) CrossRef
Stuchly, M.A., Stuchly, S.S., IEEE Trans. Instrum. Meas. 29, 176 (1980) CrossRef
Jiang, G.Q., Wong, W.H., Raskovich, E.Y., Clark, W.G., Hines, W.A., Sanny, J., Rev. Sci. Instrum. 64, 1614 (1993) CrossRef
Rmili, H., Miane, J.L., Zangar, H., Olinga, T.E., Eur. Phys. J. Appl. Phys. 29, 65 (2005) CrossRef
Krupka, J., Meas. Sci. Technol. 17, R55 (2006) CrossRef
Hegedusic, V., Lovric, T., Parmac, A., Acta Alim. 22, 337 (1995)
A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)
Haque, N.U., Hashmi, R.A., Anis, M.K., J. Non-Cryst. Sol. 175, 244 (1994) CrossRef
Nimtz, G., Enders, A., Marquardt, P., Pelster, R., Wessling, B., Synth. Met. 45, 197 (1991) CrossRef
Papathanassiou, A.N., Grammatikakis, J., Sakellis, I., Sakkopoulos, S., Vitoratos, E., Dalas, E., J. Appl. Phys. 96, 3883 (2004) CrossRef
Nowick, A.S., Vaysley, A.V., Kuskovsky, I., Phys. Rev. B 58, 8398 (1998) CrossRef
Yamamura, H., Takeda, S., Kakinuma, K., Solid State Ion. 178, 889 (2007) CrossRef
Matveeva, E.S., Parkhutik, V.P., Diaz, R.. Calleja, I. Hernandez-Fuentes, Synth. Met. 79, 159 (1996) CrossRef
Jonscher, A.K., Philos. Mag. B 38, 587 (1978) CrossRef
Pelster, R., Nimtz, G., Wessling, B., Phys. Rev. B 49, 12718 (1994) CrossRef
De, S., De, A., Das, A., De, S.K., Mater. Chem. Phys. 91, 477 (2005) CrossRef
Yoon, C.O., Reghu, M., Moses, D., Cao, Y., Heeger, A.J., Synth. Met. 69, 255 (1995) CrossRef
N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)
Gmati, F., Fattoum, A., Bohli, N., Belhadj Mohamed, A., J. Phys.: Condens. Matter 20, 125221 (2008)
Long, A.R., Adv. Phys. 31, 553 (1982) CrossRef
Wu, Q., Xue, Z., Qi, Z., Wang, F., Polymer 41, 2029 (2000) CrossRef
Xia, Y., Wiesinger, J., MacDiarmid, A., Chem. Mater. 7, 443 (1995) CrossRef
Brar, S.K., Verma, M., Tyagi, R.D., Valero, J.R., Surampalli, R.Y., Chemosphere 67, 674 (2007) CrossRef
www.brookfieldengineering.com/support/documentation/solutions-to-sticky-problems.asp
El-Samahy, S.K., Abd El, E.A.-Hady, R.A. Habiba, T.E. Moussa, J. Profess. Assoc. Cactus Develop. 8, 39 (2006)
Zheng, W., Min, Y., MacDiarmid, A.G., Angelopoulos, M., Liao, Y.H., Epstein, A.J., Synth. Met. 84, 63 (1997) CrossRef
Wessling, B., Synth. Met. 41-43, 1057 (1991) CrossRef