Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T21:48:54.175Z Has data issue: false hasContentIssue false

Development of perovskite structure and electrical properties of Pb(Zr1/2Ti1/2)O3-Pb(Ni1/3Nb2/3)O3 system

Published online by Cambridge University Press:  17 June 2010

B.-J. Fang*
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
Q.-B. Du
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
L.-M. Zhou
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
Y.-H. Shen
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
J. Wang
Affiliation:
School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P.R. China
Get access

Abstract

Phase pure perovskite structure (1-x)Pb(Zr1/2Ti1/2)O3-xPb(Ni1/3Nb2/3)O3 (PZT-PNN, x = 0.05-0.40) ferroelectric ceramics were prepared by conventional solid-state reaction method via the columbite precursor technique. The PZT-PNN ceramics sintered at 1225 °C for 2 h exhibit rather homogenous microstructure and high relative density. With the increase of the Pb(Ni1/3Nb2/3)O3 (PNN) content, the crystal structure of PZT-PNN changes gradually from tetragonal perovskite structure to rhombohedral one, where the morphotropic phase boundary (MPB) composition locates at a region of x = 0.15-0.20 determined by X-ray diffraction (XRD) and dielectric measurements. Furthermore, the dielectric response peaks of PZT-PNN also changes from narrow, sharp and almost frequency independent peaks of normal ferroelectrics to broad, diffused and apparent frequency dependent peaks of relaxor ferroelectrics, accompanied by the decrease of the temperature of dielectric maximum (T m ) with the increase of the PNN content. PZT-PNN with the MPB composition exhibits integral excellent electrical properties, where 0.80PZT-0.20PNN exhibits the maximum value of dielectric constant ε m 26750 at 280.6 °C, the remanent polarization P r is 25.17 µC/cm2, coercive field E c is 5.82 kV/cm, and piezoelectric constant d 33 reaches 281 pC/N.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shrout, T.R., Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987)
Shrout, T.R., Swartz, S.L., Haun, M.J., Am. Ceram. Soc. Bull. 63, 808 (1984)
Lei, C., Chen, K., Zhang, X., Mater. Lett. 54, 8 (2002) CrossRef
Fang, B., Sun, R., Shan, Y., Tezuka, K., Imoto, H., J. Phys. Chem. Solids 70, 893 (2009) CrossRef
Yamamoto, K., Kokubo, A., Sakai, K., Takagi, K., Ultrasonics 38, 830 (2000) CrossRef
Bouzid, A., Bourim, E.M., Gabbay, M., Fantozzi, G., J. Eur. Ceram. Soc. 25, 3213 (2005) CrossRef
Noheda, B., Gonzalo, J.A., Cross, L.E., Guo, R., Park, S.-E., Cox, D.E., Shirane, G., Phys. Rev. B 61, 8687 (2000) CrossRef
Haumont, R., Dkhil, B., Kiat, J.M., Al-Barakaty, A., Dammak, H., Bellaiche, L., Phys. Rev. B 68, 014114 (2003) CrossRef
Slodczyk, A., Colomban, Ph., Pham-Thi, M., J. Phys. Chem. Solids 69, 2503 (2008) CrossRef
Ye, Z.-G., Curr. Opin. Solid State Mater. Sci. 6, 35 (2002) CrossRef
Rujijanagul, G., Vittayakorn, N., Curr. Appl. Phys. 8, 88 (2008) CrossRef
Burkhanova, A.I., Shil'nikova, A.V., Satarova, S.A., Bormanisb, K., Sternberg, K.A., J. Eur. Ceram. Soc. 24, 1541 (2004) CrossRef
Zhu, X., Zhu, J., Zhou, S., Li, Q., Meng, Z., Liu, Z., Ming, N., J. Eur. Ceram. Soc. 20, 1251 (2000) CrossRef
Swartz, S.L., Shrout, T.R., Mater. Res. Bull. 17, 1245 (1982) CrossRef
Fang, B., Cheng, Z., Sun, R., Ding, C., J. Alloys Compd. 471, 539 (2009) CrossRef
Eitel, R.E., Randall, C.A., Shrout, T.R., Rehrig, P.W., Hackenberger, W., Park, S.-E., Jpn J. Appl. Phys. 40, 5999 (2001) CrossRef
Fang, B., Shan, Y., Tezuka, K., Imoto, H., J. Eur. Ceram. Soc. 26, 867 (2006) CrossRef
Turik, A.V., Radchenko, G.S., J. Phys. D: Appl. Phys. 35, 1188 (2002) CrossRef
Uchino, K., Nomura, S., Ferroelectr. Lett. 44, 55 (1982) CrossRef