Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T09:29:21.752Z Has data issue: false hasContentIssue false

Design and microfabrication of a lateral excited gallium arsenide biosensor

Published online by Cambridge University Press:  23 December 2011

A. Bienaime
Affiliation:
FEMTO-ST Institute, 32 Avenue de l’Observatoire, 25044 Besançon Cedex, France
L. Liu
Affiliation:
FEMTO-ST Institute, 32 Avenue de l’Observatoire, 25044 Besançon Cedex, France
C. Elie-Caille
Affiliation:
FEMTO-ST Institute, 32 Avenue de l’Observatoire, 25044 Besançon Cedex, France
T. Leblois*
Affiliation:
FEMTO-ST Institute, 32 Avenue de l’Observatoire, 25044 Besançon Cedex, France
*
Get access

Abstract

GaAs crystal presents some interesting perspectives for resonant biosensors due to its piezoelectric and good mechanical properties and the opportunity to bio-functionalize the surface. Moreover, GaAs can be micromachined by wet etching in several solutions, which constitutes a batch and low-cost process of fabrication. The lateral field excitation (LFE) is used to generate bulk acoustic waves. The main advantage of LFE is the possibility to measure in liquid media, moreover reduced aging and increased frequency stability are also ensured. In this study, an analytical modelization is used to determine the orientations of the vibrating membrane and the electric field that give satisfactory metrological performances. Electrical performances are discussed as a function of geometrical parameters. A simulation based on a Finite Element Modelization is performed in order to optimize the design of the resonant structure. The microfabrication process of the structure is presented. The choice of etchants is discussed in terms of etching rates and surface textures. Several steps of the fabrication of the sensing area structure are shown and characterized. Finally, the active area is fabricated according to the theoretical and experimental results of this study.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nicu, L., Guirardel, M., Chambosse, F., Rougerie, P., Hinh, S., Trevisiol, E., François, J.M., Majoral, J.P., Caminade, A.M., Cattan, E., Bergaud, C., Sens. Actuators B: Chem. 110, 125 (2005)CrossRef
Maraldo, D., Mutharasan, R., Sens. Actuators B: Chem. 143, 731 (2010)CrossRef
Hu, Y., French, A., Radecsky, J.K., Pereira da Cunha, M., Millard, P., Vetelino, J.F., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1373 (2004)CrossRef
Martin, S.J., Frye, G.C., Wessendorf, K.O., Sens. Actuators A: Phys. 44, 209 (1994)CrossRef
Stehrer, B.P., Gruber, H., Schwödiauer, R., Graz, I.M., Bauer, S., in Proc. of the Eurosensors XXIII Conference, Lausanne, Switzerland, 2009, Procedia Chemistry, vol. 1, p. 1507
Zhang, J., O’Shea, S., Sens. Actuators B: Chem. 94, 65 (2003)CrossRef
Söderkvist, J., Sens. Actuators A: Phys. 43, 65 (1994)CrossRef
Tellier, C.R., Leblois, T., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1204 (2000)CrossRef
Leblois, T., Tellier, C.R., Sens. Actuators A: Phys. 99, 256 (2002)CrossRef
Tellier, C.R., Huve, G., Leblois, T., Sens. Actuators A: Phys. 127, 179 (2006)CrossRef
Fricke, F., J. Appl. Phys. 70, 1914 (1991)CrossRef
Ukita, H., Uenishi, Y., Tanaka, H., Science 260, 786 (1993)CrossRef
Hjort, K., Söderkvist, J., Schweitz, J.A., J. Micromech. Microeng. 4, 1 (1994)CrossRef
Ida, S., Ito, K., J. Electrochem. Soc. 118, 768 (1971)CrossRef
Zhang, Z.L., MacDonald, N.C., J. Microelectromech. Syst. 2, 66 (1993)CrossRef
Hjort, K., J. Micromech. Microeng. 6, 370 (1996)CrossRef
Miao, J., Hartnagel, H.L., Rück, D., Fricke, K., Sens. Actuators A: Phys. 46, 30 (1995)CrossRef
Miao, J., Hartnagel, H., Sens. Actuators A: Phys. 114, 505 (2004)CrossRef
Wieliczka, D.M., Ding, X., Dubowski, J.J., J. Vac. Sci. Technol. A 24, 1756 (2006)CrossRef
Budz, H.A., Lapierre, R.R., J. Vac. Sci. Technol. A 26, 1425 (2008)CrossRef
Ballato, A., in Proc. of IEEE International Frequency Control Symposium, Kansas City, MO, 2000, p. 340
Lee, P.C.Y., in Proc. of IEEE Ultrasonics Symposium, Chicago, USA, 1988, p. 407
Corso, C.D., Dickherber, A., Hunt, W.D., J. Appl. Phys. 101, 054514 (2007)CrossRef
Meeker, T.R., IEEE Standard on Piezoelectricity, vol. 176 (ANSI/IEEE Std, New York, 1987)Google Scholar
Hjort, K., Schweeger, G., Dehe, A., Fricke, K., Hartnagel, H.L., Appl. Phys. Lett. 66, 326 (1995)CrossRef
Bienaime, A., Elie-Caille, C., Leblois, T., J. Nanosci. Nanotechnol. (2012, in press)
Adachi, S., Kikuchi, D., J. Electrochem. Soc. 147, 4618 (2000)CrossRef
Takebe, T., Yamamoto, T., Fujii, M., Kobayashi, K., J. Electrochem. Soc. 140, 1169 (1993)CrossRef
Wilson, S.W., Armstrong, R.W., Dagenais, M., Beard, W.T., Wood, C.E.C., J. Mater. Sci. Electron. 8, 109 (1997)CrossRef
Bryce, C., Berk, D., Ind. Eng. Chem. Res. 35, 4464 (1996)CrossRef
Tuck, B., J. Mater. Sci. 10, 321 (1975)CrossRef
Adachi, S., Oe, K., J. Electrochem. Soc. 130, 2427 (1983)CrossRef
MacFayden, D.N., J. Electrochem. Soc. 130, 1934 (1983)CrossRef
Shaw, D.W., J. Electrochem. Soc. 128, 874 (1981)CrossRef
Tellier, C.R., Leblois, T.G., Sens. Actuators A: Phys. 132, 224 (2006)CrossRef
Poon, C.Y., Bhushan, B., Wear 190, 76 (1995)CrossRef