Published online by Cambridge University Press: 06 November 2013
The development of CCS (carbon capture and storage) currently faces numerous problems and particularly the precipitation of salts induced by the drying of the porous medium during injection of carbon dioxide in deep saline aquifers. This precipitation has several consequences, and particularly the creation of a crystallization pressure which can have an important mechanical impact on the host rock. Literature on crystallization pressure is one century rich of experimental and theoretical works. However, applications have been performed in the field of civil engineering and building science only, and, despite they are of paramount importance in the context of CCS, studies about this phenomenon in deep reservoir conditions are currently lacking. In this paper, we retrieve the classic crystallization pressure equation within the framework of geochemistry and present its explicit form of dependence with temperature, pressure, and composition. Evaluation of the crystallization pressure has then been proceeded considering the injection conditions and a sketch of in-pore crystallization process. The evolution of the local stress transmitted to a crystallized pore wall is found to be strongly related to the petrophysical properties of the medium and to the injection temperature of the carbon dioxide under the assumption of constant salt concentration during the precipitation process. Values differ strongly with the considered mineral, depending particularly on the solubility, and can reach in some conditions 165 MPa, making crystallization pressure a major factor in the mechanical behavior of the aquifer.