Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:02:46.568Z Has data issue: false hasContentIssue false

Defect creation kinetics in swift heavy ions, protons and electrons irradiated germanium

Published online by Cambridge University Press:  15 February 2001

A. Colder
Affiliation:
LERMAT (FRE CNRS 2149), ISMRA, 6 boulevard Maréchal Juin, 14050 Caen Cedex, France
M. Levalois
Affiliation:
LERMAT (FRE CNRS 2149), ISMRA, 6 boulevard Maréchal Juin, 14050 Caen Cedex, France
P. Marie*
Affiliation:
LERMAT (FRE CNRS 2149), ISMRA, 6 boulevard Maréchal Juin, 14050 Caen Cedex, France
Get access

Abstract

N-type lightly doped germanium has been irradiated at room temperature with different particles: swift heavy ions, protons and electrons. Hall effect measurements have been carried out versus either the temperature (at a given fluence) or the fluence (at room temperature). Using the level positions determined by DLTS results previously reported, we extract from the Hall coefficient simulation at low doses the creation kinetics of the irradiation-induced defects. These defects are typically at room temperature the A-centre, the E-centre and the divacancy complexes. At higher doses, in the case of electron irradiation, these simulations are still feasible using only the previous defects mentioned above since the material leads towards a quasi-intrinsic state. But we point out that it is necessary in the case of proton and swift heavy ion irradiations to add an acceptor level in the forbidden band probably associated with a multivacancy defect. Indeed, in these cases, the material becomes p-type. Finally, the experimental introduction rates are compared to the theoretical ones. It appears that the relative damage creation efficiency is not very different from a projectile to another, proving that there is no strong dependence on the electronic energy loss.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cleland, J.W., Crawford Jr, J.H., Pigg, J.C., J. Appl. Phys. 30, 1204 (1959).
Gobeli, G.W., Phys. Rev. 112, 732 (1958). CrossRef
Callcott, T.A., Mackay, J.W., Phys. Rev. 161, 62 (1967).
Mackay, J.W., Klontz, E.E., J. Appl. Phys. 30, 1269 (1959). CrossRef
Mooney, P.M., Poulin, F., Bourgoin, J.C., Phys. Rev. B 28, 3372 (1983). CrossRef
Fukuoka, N., Saito, H., Jpn J. Appl. Phys. 15, 237 (1976). CrossRef
Lang, D., J. Appl. Phys. 45, 3023 (1974). CrossRef
Poulin, F., Bourgoin, J.C., Phys. Rev. B 26, 6788 (1982). CrossRef
Fourches, N., Walter, G., Bourgoin, J.C., J. Appl. Phys. 69, 2033 (1991). CrossRef
Toulemonde, M., Dural, J., Nouet, G., Mary, P., Hamet, J.F., Beaufort, M.F., Desoyer, J.C., Blanchard, C., Auleytner, J., Phys. Stat. Sol. A 114, 467 (1989). CrossRef
Mary, P., Bogdanski, P., Toulemonde, M., Spohr, R., Vetter, J., Nucl. Instrum. Methods B 62, 391 (1992). CrossRef
Levalois, M., Bogdanski, P., Toulemonde, M., Nucl. Instrum. Methods B 63, 14 (1992). CrossRef
Mangiagalli, P., Levalois, M., Marie, P., Rancoita, P.G., Rattaggi, M., Nucl. Phys. B (Proc. Suppl.) 61, 464 (1998). CrossRef
Mangiagalli, P., Levalois, M., Marie, P., Rancoita, P. G., Rattaggi, M., Eur. Phys. J. AP 6, 121 (1999). CrossRef
Marie, P., Levalois, M., Bogdanski, P., J. Appl. Phys. 74, 868 (1993). CrossRef
Marie, P., Levalois, M., Paumier, E., J. Appl. Phys. 79, 7555 (1996). CrossRef
Levalois, M., Marie, P., Nucl. Instrum. Methods B 156, 64 (1999). CrossRef
Mikou, M., Carin, R., Bogdanski, P., Madelon, R., Nucl. Instrum. Methods B 107, 246 (1996). CrossRef
Mikou, M., Carin, R., Bogdanski, P., Marie, P., J. Phys. III France 7, 1661 (1997). CrossRef
Colder, A., Levalois, M., Marie, P., J. Appl. Phys. 88, 3082 (2000). CrossRef
J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985), see also TRIM'98.
van der Pauw, L.J., Philips Res. Rep. 13, 1 (1958).
S. M. Sze, Semiconductors Devices, 2nd edn. (Wiley, New York, 1981).
Chaudhari, P., Bhoraskar, S.V., Padgavkar, S., Bhoraskar, V.N., J. Appl. Phys. 70, 1261 (1991). CrossRef
Wada, T., Yasuda, K., Ikuta, S., Takeda, M., Masuda, H., J. Appl. Phys. 48, 2145 (1977). CrossRef
Fukuoka, N., Saito, H., Jpn J. Appl. Phys. 20, L519 (1981). CrossRef
Fukuoka, N., Saito, H., Jpn J. Appl. Phys. 21, 930 (1982). CrossRef
Poulin, F., Bourgoin, J.C., Rev. Phys. Appl. 15, 15 (1980). CrossRef
J.C. Bourgoin, P.M. Mooney, F. Poulin, Inst. Phys. Conf. Ser. No. 59 (Sept. 1980).
Marie, P., Levalois, M., J. Appl. Phys. 75, 1852 (1994). CrossRef
Clauws, P., Mat. Sci. Eng. B 36, 213 (1996). CrossRef
B. Pajot, private communication, 2000.
Mangiagalli, P., Levalois, M., Marie, P., Nucl. Instrum. Methods B 146, 317 (1998). CrossRef
O. S. Oen, Technical Report, Oak Ridge National Laboratory (1973).
Huber, H., Assmann, W., Karamian, S.A., Mücklich, A., Prusseit, W., Gazis, E., Grötzschel, R., Kokkoris, M., Kossionidis, E., Mieskes, H.D., Vlastou, R., Nucl. Instrum. Methods B 122, 542 (1997). CrossRef