Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T22:25:06.828Z Has data issue: false hasContentIssue false

Cr4+-doped silica optical fibres: absorption and fluorescence properties

Published online by Cambridge University Press:  15 August 2000

V. Felice
Affiliation:
Laboratoire de Physique de la Matière Condensée (UMR CNRS UNSA 6622), Université de Nice Sophia Antipolis, parc Valrose, 06108 Nice Cedex 2, France
B. Dussardier*
Affiliation:
Laboratoire de Physique de la Matière Condensée (UMR CNRS UNSA 6622), Université de Nice Sophia Antipolis, parc Valrose, 06108 Nice Cedex 2, France
J. K. Jones
Affiliation:
Laboratoire de Physique de la Matière Condensée (UMR CNRS UNSA 6622), Université de Nice Sophia Antipolis, parc Valrose, 06108 Nice Cedex 2, France
G. Monnom
Affiliation:
Laboratoire de Physique de la Matière Condensée (UMR CNRS UNSA 6622), Université de Nice Sophia Antipolis, parc Valrose, 06108 Nice Cedex 2, France
D. B. Ostrowsky
Affiliation:
Laboratoire de Physique de la Matière Condensée (UMR CNRS UNSA 6622), Université de Nice Sophia Antipolis, parc Valrose, 06108 Nice Cedex 2, France
Get access

Abstract

Chromium-doped silica-based optical fibres emit infrared fluorescence at 77 K near 1250 nm (500 nm band-width) under 860−980 nm excitation. Visible and near-infrared absorption spectra of fibres were analysed using the Tanabe-Sugano formalism. It is shown that although the fibre core is codoped with only 1 mol% of aluminium, chromium is preferentially stabilized as Cr4+ in Al-rich regions of the glassy matrix in distorted tetrahedrally coordinated sites. The infrared fluorescence is assigned to Cr4+ along a transition from the 3T2 state down to the 3A2 ground state.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, I.P., Ferguson, A.I., Hanna, D.C., Tropper, A.C., Opt. Lett. 11, 709 (1986). CrossRef
Sennaroglu, A., Pollock, C.R., Nathel, H., J. Opt. Soc. Am. B 12, 930 (1996). CrossRef
Lipavsky, B., Kalisky, Y., Burshtein, Z., Shimony, Y., Rotman, S., Opt. Mat. 13, 117 (1999). CrossRef
Schultz, P.C., J. Am. Ceram. Soc. 57, 309 (1974). CrossRef
K. Cerqua-Richardson, B. Peng, T. Izumitani, in OSA Proc. Advanced Solid State Lasers (1992), edited by L. Chase, A. Pinto (Optical Society of America), Vol. 13, p. 52.
U. Hömmerich, H. Eilers, W.M. Yen, J.S. Hayden, M.K. Aston, J. Lum. 60; 61, 119 (1994).
S. Sugano, Y. Tanabe, H. Kamimura, in Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970).
Townsend, J.E., Poole, S.B., Payne, D.N., Electron. Lett. 23, 329 (1987). CrossRef
D. Vivien (private communication).
B. Henderson, G.F. Imbush, in Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).
Anino, C., Théry, J., Vivien, D., Opt. Mat. 8, 121 (1997). CrossRef
Moncorgé, R., Manaa, H., Boulon, G., Opt. Mat. 4, 139 (1994). CrossRef