Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T15:43:40.418Z Has data issue: false hasContentIssue false

Coupling of Rayleigh-Wood anomalies andthe circular Bragg phenomenon in slanted chiral sculptured thin films

Published online by Cambridge University Press:  25 October 2002

F. Wang*
Affiliation:
CATMAS – Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, USA
A. Lakhtakia
Affiliation:
CATMAS – Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, USA
R. Messier
Affiliation:
CATMAS – Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, USA
Get access

Abstract

Slanted chiral sculptured thin films (STFs) are introduced as nano-engineered materials that are effectively periodic in two orthogonal directions. Their periodicities normal and parallel to the substrate plane are related by a slant angle. A coupled wave theory is formulated and implemented for the planewave response of a slanted chiral STF of finite thickness. Numerical results show that the nonspecular remittances and the Rayleigh-Wood anomalies due to periodicity parallel to the substrate plane are tightly coupled to the specular nature of the circular Bragg phenomenon displayed due to periodicity normal to the substrate plane. In the Bragg regime, the left- and the right-circularly polarized components of the incident plane wave are redirected in non-trivially different directions. The potential of slanted chiral STFs as narrowband circular polarization beamsplitters is established.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Gale, Phys. World 2, 24 (October 1989)
Parker, A.R., Am. Sci. 87, 248 (1999) CrossRef
Parker, A.R., J. Opt. A: Pure Appl. Opt. 2, R15 (2000) CrossRef
Selected Papers on Diffraction Gratings, edited byD. Maystre (SPIE Optical Engineering Press, Bellingham, WA, 1993)
Gaylord, T.K., Moharam, M.G., Proc. IEEE 73, 894 (1985) CrossRef
Lakhtakia, A., Varadan, V.K., Varadan, V.V., J. Opt. Soc. Am. A 6, 1675 (1989); 7, 951 (1990) CrossRef
Palmer Jr, C.H.., J. Opt. Soc. Am. 42, 269 (1952) CrossRef
Hessel, A., Oliner, A.A., Appl. Opt. 4, 1275 (1965) CrossRef
Selected Papers on Linear Optical Composite Materials, edited by A. Lakhtakia (SPIE Optical Engineering Press, Bellingham, WA, 1996)
H.A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, Bristol, UK, 2001)
Geddes III, J.B., Lakhtakia, A., Eur. Phys. J. AP 17, 21 (2002) CrossRef
Othonos, A., Rev. Sci. Instrum. 68, 4309 (1997) CrossRef
P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, UK, 1993), Chap. 6
Lakhtakia, A., Mater. Sci. Eng. C 19, 427 (2002) CrossRef
M.W. McCall, A. Lakhtakia, Electromagnetics 23, in press
McCall, M.W., Lakhtakia, A., Proc. SPIE 4806, 129 (2002) CrossRef
Hodgkinson, I., Q.h. Wu, Adv. Mater. 13, 889 (2001) 3.0.CO;2-K>CrossRef
Robbie, K., Brett, M.J., Lakhtakia, A., J. Vac. Sci. Technol. A 12, 2991 (1995) CrossRef
Liu, F., Umlor, M.T., Shen, L., Weston, J., Eads, W.,J.A. Barnard, G.J. Mankey, J. Appl. Phys. 85, 5486 (1999) CrossRef
Hodgkinson, I.J., Q.h. Wu, B. Knight, A. Lakhtakia,K. Robbie, Appl. Opt. 39, 642 (2000) CrossRef
Messier, R., Venugopal, V.C., Sunal, P.D., J. Vac. Sci. Technol. B 18, 1538 (2000) CrossRef
Suzuki, M., Taga, Y., Jpn. J. Appl. Phys. Pt. 2 40, L358 (2001) CrossRef
V.C. Venugopal, A. Lakhtakia, in Electromagnetic Fields in Unconventional Materials and Structures, edited by O.N. Singh, A. Lakhtakia (Wiley, New York, NY, 2000), pp. 151-216
Venugopal, V.C., Lakhtakia, A., Proc. R. Soc. London A 456, 125 (2000) CrossRef
R. Messier, A. Lakhtakia, V.C. Venugopal, P.D. Sunal, Vac. Technol. Coating 2, 40 (October 2001)
Rokushima, K., Yamakita, J., J. Opt. Soc. Am. 73, 901 (1983) CrossRef
J.M. Jarem, P.P. Banerjee, Computational Methods for Electromagnetic and Optical Systems (Marcel Dekker, New York, NY, 2000), Chap. 3
C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, India, 1974), Chap. 13
Lakhtakia, A., Eur. Phys. J. AP 8, 129 (1999) CrossRef
Hodgkinson, I., Q.h. Wu, Appl. Opt. 38, 3621 (1999) CrossRef
I. Hodgkinson, Q.h. Wu, Birefingent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997), Chap. 16
J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, NY, 1999), Sect. 7.3
Rokushima, K., Yamakita, J., J. Opt. Soc. Am. A 4, 27 (1987) CrossRef
G. Strang, Introduction to Applied Mathematics (Wellesley-Cambridge Press, Wellesley, MA, 1986), Chap. 1
McCall, M.W., Math. Comput. Model. 34, 1483 (2001) CrossRef
Venugopal, V.C., Lakhtakia, A., Eur. Phys. J. AP 10, 173 (2000) CrossRef
Abdulhalim, I., Benguigui, L., Weil, R., J. Phys. (Paris) 46, 815 (1985) CrossRef
Kipfer, P., Klappert, R., Herzig, H.P., Grupp, J.,R. , Opt. Eng. 41, 638 (2002)