Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T22:41:58.167Z Has data issue: false hasContentIssue false

Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties

Published online by Cambridge University Press:  26 January 2006

H. Takele
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU, Kaiserstrasse 2, 24143 Kiel, Germany
U. Schürmann
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU, Kaiserstrasse 2, 24143 Kiel, Germany
H. Greve
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU, Kaiserstrasse 2, 24143 Kiel, Germany
D. Paretkar
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU, Kaiserstrasse 2, 24143 Kiel, Germany
V. Zaporojtchenko
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU, Kaiserstrasse 2, 24143 Kiel, Germany
F. Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der CAU, Kaiserstrasse 2, 24143 Kiel, Germany
Get access

Abstract

Nanocomposite films containing Au nanoparticles embedded in a polymer matrix were prepared by vapour phase co-deposition of Au and polymers (Teflon AF and Poly( $\alpha $ -methylstyrene)) in high vacuum. The microstructure of the composite materials as well as metal content strongly depend on the condensation coefficient of the Au atoms, the deposition rates of the components, the substrate temperature, and the type of polymer matrix. The condensation coefficient, which varies between 0.03 and 1, was determined from energy dispersive X-ray spectrometer (EDX) and surface profilometry. It is shown that the microstructure of nanocomposites (size, size distribution, and interparticle separation of metal clusters), which was determined by transmission electron microscopy, can be controlled by the deposition parameters and the choice of polymer matrix. The optical absorption in the visible region due to the particle plasmon resonance has a strong dependence on the metal filling factor. The correlation between the microstructure of nanocomposites and optical properties, studied using UV-Vis spectroscopy, was also established. Further more, the electrical properties of the composites were studied as a function of the metal volume fraction. It was observed that the nanocomposite films exhibit a percolation threshold at a metal volume fraction of 0.43 and 0.20 for gold nanoclusters in Teflon AF and Poly(α-methylstyrene), respectively.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beecroft, L.L., Ober, C.K., Chem. Mater. 9, 1302 (1997) CrossRef
Kelly, K.L., Coronado, E., Lin Lin Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003) CrossRef
U. Kreibig, M. Vollmer, Optical properties of Metal clusters (Springer, Berlin, 1995)
A. Heilmann, Polymer Films with Embedded Metal Nanocomposites (Springer-Verlag, Berlin Heidelberg, 2003)
K. Behnke, T. Strunskus, V. Zaporojtchenko, F. Faupel, in Proc. 3rd Int. Conf. MicroMat 2000, edited by B. Michel, T. Winkler, M. Werner, H. Fecht, 2000, p. 1052
Biswas, A., Marton, Z., Kanzow, J., Kruse, J., Zaporojtchenko, V., Faupel, F., Nano Letters 3, 69 (2003) CrossRef
Biswas, A., Aktas, O.C., Schürmann, U., Saeed, U., Zaporjtchenko, V., Faupel, F., J. Appl. Phys. 84, 2655 (2004)
F. Faupel, A. Thran, M. Kiene, T. Strunkus, V. Zaporojtchenko, K. Behnke, in Low Dielectric Constant Materials for IC Applications, edited by P.S. Ho, W.W. Lee, J. Leu (Springer Verlag, 2003) (invited book chapter), p. 221
Zaporojtchenko, V., Zekonyte, J., Biswas, A., Faupel, F., Surf. Sci. 532-535, 300 (2003) CrossRef
Thran, A., Kiene, M., Zaporojtchenko, V., Faupel, F., Phys. Rev. Lett. 82, 1903 (1999) CrossRef
Heilmann, A., Werner, J., Stenzel, O., Homilius, F., Thin Solid Films 246, 77 (1994) CrossRef
Akamatsu, K., Deki, S., J. Colloid Interf. Sci. 214, 353 (1999) CrossRef
Augelli, V., Ligonzo, T., Masellis, M.C., Muscarella, M.F., Schiavulli, L., Valentini, A., J. Appl. Phys. 90, 1362 (2001) CrossRef
F. Faupel, A. Thran, V. Zaporojtchenko, M. Kiene, T. Strunskus, K. Behnke, in Stress-Induced Phenomena in Metallization, 5th Int. Workshop, edited by O. Kraft, E. Arzt, C.A. Volkert, P.S. Ho, H. Okabayashi, AIP Conf. Proc. 491, Stuttgart, 1999 (invited paper)
Zaporojtchenko, V., Behnke, K., Strunskus, T., Faupel, F., Surf. Sci. 454-456, 412 (2000) CrossRef
Zaporojtchenko, V., Strunskus, T., Erichsen, J., Faupel, F., Macromolecules 5, 1125 (2001) CrossRef
Canet, P., Laurent, C., Akinnifesi, J., Despax, B., J. Appl. Phys. 72, 6 (1992) CrossRef
Ung, T.. Luis M. Liz-Marzan, P. Mulvaney, J. Phys. Chem. B 105, 3441 (2001) CrossRef
Cohen, R.W., Cody, G.D., Coutts, M.D., Abeles, B., Phys. Rev. B 8, 3689 (1973) CrossRef
Ping Sheng, , Phys. Rev. Lett. 45, 60 (1980) CrossRef
Kay, E., Hecq, M., J. Appl. Phys. 55, 2 (1984) CrossRef
Martinu, L., Sol. Energ. Mat. 15, 21 (1987) CrossRef
Caseri, W., Macromol. Rapid Comm. 21, 705 (2000) 3.0.CO;2-3>CrossRef
Biswas, A., Aktas, O.C., Kanzow, J., Saeed, U., Strunkus, T., Zaporjtchenko, V., Faupel, F., Mater. Lett. 58, 1530 (2004) CrossRef
Teransishi, T., Hasegawa, S., Shimizu, T., Miyake, M., Adv. Mater. 13, 1699 (2001) 3.0.CO;2-3>CrossRef
Iwamoto, M., Kuroda, K., Zaporojtchenko, V., Hayashi, S., Faupel, F., Eur. Phys. J. D 24, 365 (2003) CrossRef