Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:21:00.907Z Has data issue: false hasContentIssue false

Control of the substrate temperature using a triode magnetron sputtering system

Published online by Cambridge University Press:  30 November 2010

D. A. Duarte*
Affiliation:
Santa Catarina State University, Plasmas Physics Laboratory, 89223-100, Joinville, SC, Brazil Technological Institute of Aeronautics, Plasma Science and Technology Laboratory, 12228-900, S.J. dos Campos, SP, Brazil
J. C. Sagás
Affiliation:
Santa Catarina State University, Plasmas Physics Laboratory, 89223-100, Joinville, SC, Brazil Technological Institute of Aeronautics, Plasma Science and Technology Laboratory, 12228-900, S.J. dos Campos, SP, Brazil
L. C. Fontana
Affiliation:
Santa Catarina State University, Plasmas Physics Laboratory, 89223-100, Joinville, SC, Brazil
A. S. da Silva Sobrinho
Affiliation:
Technological Institute of Aeronautics, Plasma Science and Technology Laboratory, 12228-900, S.J. dos Campos, SP, Brazil
M. J. Cinelli
Affiliation:
Santa Catarina State University, Plasmas Physics Laboratory, 89223-100, Joinville, SC, Brazil
Get access

Abstract

The bombardment of ions and electrons at the substrate has been studied by varying the magnetic field distribution and the grid-target distance in a triode magnetron sputtering system. The substrate temperature was correlated with the substrate current density and with the type of species bombarding the substrate. The results indicate a possibility to modify and control the bombardment at the substrate surface from predominantly electronic to predominantly ionic, which increases the substrate temperature from 383 K to 473 K, respectively.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kersten, H., Deutsch, H., Steffen, H., Kroesen, G.M.W., Hippler, R., Vacuum 63, 385 (2001) CrossRef
Han, J.G., J. Phys. D: Appl. Phys. 42, 043001 (2009) CrossRef
Schneider, J.M., Rohde, S., Sproul, W.D., Matthews, A., J. Phys. D: Appl. Phys. 33, R173 (2000) CrossRef
Rodil, S.E., Olaya, J.J., J. Phys.: Condens. Matter 18, S1703 (2006)
Jung, M.J., Nam, K.H., Shaginyam, L.R., Han, J.G., Thin Solid Films 145, 435 (2003)
Duarte, D.A., Massi, M., da Silva Sobrinho, A.S., Maciel, H.S., Grigorov, K., Fontana, L.C., Eur. Phys. J. Appl. Phys. 49, 13107 (2010) CrossRef
Fontana, L.C., Muzart, J.R.L., Surf. Coat. Technol. 107, 24 (1998) CrossRef
Fontana, L.C., Muzart, J.R.L., Surf. Coat. Technol. 114, 7 (1999) CrossRef
Recco, A.A.C., López, D., Bevilacqua, A.F., Silva, F., Tschiptschin, A.P., Surf. Coat. Technol. 202, 993 (2007) CrossRef
Recco, A.A.C., Oliveira, I.C., Massi, M., Maciel, H.S., Tschiptschin, A.P., Surf. Coat. Technol. 202, 1078 (2007) CrossRef
Recco, A.A.C., Viáfara, C.C., Sinatora, A., Tschiptschin, A.P., Wear 267, 1146 (2009) CrossRef
Zhou, W., Zhong, X., Wu, X., Yuan, L., Shu, Q., Li, W., Xia, Y., J. Phys. D: Appl. Phys. 40, 219 (2007) CrossRef
Toku, H., Pessoa, R.S., Maciel, H.S., Massi, M., Mengui, U.A., Surf. Coat. Technol. 202, 2126 (2008) CrossRef
Musil, J., Herman, D., Sicha, J., J. Vac. Sci. Technol. A 24, 521 (2006) CrossRef
Window, B., Savvides, N., J. Vac. Sci. Technol. A 4, 196 (1986) CrossRef
Kelly, P.J., Arnell, R.D., Surf. Coat. Technol. 98, 1370 (1998) CrossRef
Zhou, W., Zhong, X., Wu, X., Yuan, L., Shu, Q., Li, W., Xia, Y., J. Phys. D: Appl. Phys. 40, 219 (2007) CrossRef
Arumainayagam, C.R., Lee, H.-L., Nelson, R.B., Haines, D.R., Gunawardane, R.P., Surf. Sci. Rep. 65, 1 (2010) CrossRef
Mattox, D.M., J. Vac. Sci. Technol. A 7, 1105 (1989) CrossRef