Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:13:11.207Z Has data issue: false hasContentIssue false

Comparing the luminescence of ZnS:Mn/CdS:Mn quantum dots

Published online by Cambridge University Press:  16 January 2009

M. H. Yousefi*
Affiliation:
Nanotechnology Research Group, Faculty of Applied Sciences, Malek-Ashtar University of Technology, P.O. Box 83145/115 Shahinshahr, Isfahan, Iran
A. A. Khosravi
Affiliation:
Department of Physics, Faculty of Sciences, University of Shahed, Tehran, Iran
K. Rahimi
Affiliation:
Nanotechnology Research Group, Faculty of Applied Sciences, Malek-Ashtar University of Technology, P.O. Box 83145/115 Shahinshahr, Isfahan, Iran
A. Nazesh
Affiliation:
Nanotechnology Research Group, Faculty of Applied Sciences, Malek-Ashtar University of Technology, P.O. Box 83145/115 Shahinshahr, Isfahan, Iran
Get access

Abstract

A simple chemical route has been deployed to synthesis highly monodispersed and controllable ZnS and CdS nanoparticles (quantum dots) doped with Mn. XRD investigations shows the cubic structure of both ZnS and CdS nanoparticles and doping has no effect on the structure. The size measurement gives an approximate size of 1.5 nm and 2.5 nm for ZnS:Mn and CdS:Mn quantum dots respectively by Deby-Shreer. UV-Visible is used to study the Optical absorption of ZnS and CdS pure as well as doped nanoparticles. Furthermore as the chemical parameters change, the size of quantum dots change systemically. Of course although doping percentage is a significant parameter in photoluminescence properties of quantum dots, but it has no effect on the size. Photoluminescence spectra obtained at 6% molar of the Mn dopant in CdS:Mn (Ex = 315, Em = 495 nm) and ZnS:Mn (Ex = 285, Em = 572 nm). Microscopic images (SEM, TEM) show the 1–3 nm size for ZnS and CdS nanoparticles.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brus, L.E., J. Chem. Phys. 79, 5566 (1983) CrossRef
Rossetti, R., Hull, R., Gibson, J.M., Brus, L.E., J. Chem. Phys. 82, 552 (1985) CrossRef
Fojtik, A., Weller, H.L., Henglien, A., Chem. Phys. Lett. 120, 552 (1985) CrossRef
Tobin, J.G., Colvin, V.L., Alivisatos, A.P., J. Vac. Sci. Technol. A 9, 852 (1991) CrossRef
Brus, L.E., J. Chem. Phys. 80, 4403 (1984) CrossRef
Wang, Y., Herron, N., J. Phys. Chem. 95, 523 (1991)
Henglein, A., Top. Curt. Chem. 143, 133 (1988)
Bhargava, R.N., Gallagher, D., Hong, X., Nurmikko, A., Phys. Rev. Lett. 72, 416 (1994) CrossRef
Khosravi, A.A., Kundu, M., Jatwa, L., Deshpande, S.K., Appl. Phys. Lett. 67, 2702 (1995) CrossRef
Nosaka, Y., Yamaghuchi, K., Miyama, H., Hayashi, M., Chem. Lett. 17, 605 (1988) CrossRef
M.H. Yousefi, A. Nazesh, S. Manochehri, H.R. Pouretedal, A.A. Khosravi, First Int. Congr. Nanosci. Nanotechnol., University of Tehran, Tehran, I.R. Iran, 2007, p.177