Article contents
A comparative study of radiation damage on high resistivity silicon
Published online by Cambridge University Press: 15 May 1999
Abstract
In future particle accelerators, silicon detectors will be exposed with large doses ofdifferent types of radiation. To understand the corresponding produced damagemechanisms, a systematic study of the influence of the irradiation on the silicon fromwhich the detectors are made has to be carried out. Samples of low n-doped silicon $(n\leq 10^{12}~{\rm cm}^{-3})$ have been irradiated with swift krypton ions $(\langle E\rangle=5.2~{\rm GeV})$
, neutrons from a nuclear reactor $(\langle E\rangle\sim 1~{\rm MeV})$
and energetic electrons $(\langle E\rangle=1.5~{\rm MeV})$
. Resistivity and Hall effect measurements performed after irradiation show that the silicon is changed to a quasi-intrinsic state, characterized by a very highresistivity. The electrically active defects responsible for that evolution are Maynlyacceptor centers, namely divacancy and/or vacancy-doping complexes. Besides, for the highest fluences, only the appearance of a donor center located at about 0.59 eVbelow the conduction band may explain the observed stabilization of the Fermi level at0.61 eV. Finally, using a simulation method, the rates of generation of the different defects are estimated.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 1999
References
- 11
- Cited by