Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T17:42:36.076Z Has data issue: false hasContentIssue false

Comparative determination of the electron temperature in Ar- and N2-plasmas with electrostatic probes, optical emission spectroscopy OES and energy dispersive mass spectrometry EDMS

Published online by Cambridge University Press:  15 July 2001

G. Crolly
Affiliation:
Fachbereich Physik and Schwerpunkt für Materialwissenschaften, Universität Kaiserslautern, 67663 Kaiserslautern, Germany
H. Oechsner*
Affiliation:
Fachbereich Physik and Schwerpunkt für Materialwissenschaften, Universität Kaiserslautern, 67663 Kaiserslautern, Germany
Get access

Abstract

The electron temperature Te as the often most essential parameter for applications of low pressures plasma has been derived from comparative in situ measurements with a single and a double electrostatic probe, and with optical emission spectroscopy OES and energy dispersive mass spectrometry EDMS as remote techniques. Electrodeless rf discharges maintained by electron cyclotron wave resonance ECWR in pure Ar and N2 in the pressure regime from 10−2 to 1 Pa have been used as sample plasmas. The evaluation of the OES- and EDMS-signals is described in detail. The pressure dependence of the Te-results derived therefrom is found to compare well with the data from the probe measurements, and with calculations from a charge carrier balance equation. By matching the OES data to the absolute Te-values from the probe measurements, numerical expressions have been obtained by which Te can be quantitatively calculated from the intensity ratios between selected emission lines from the Ar- and the N2-plasma. Furthermore, the EDMS-results are also shown to deliver quantitative information about Te.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

F.F. Chen, in Plasma Diagnostic Techniques, edited by R.M. Huddlestone (Academic Press, New York, 1965).
Oechsner, H., Plasma Phys. 16, 835 (1974). CrossRef
M.V. Klein, T.E. Furtak, Optics, 2nd edn. (John Wiley & Sons, New York, 1986).
R.W.P. McWhirter, in Plasma Diagnostic Techniques, edited by R.M. Huddlestone (Academic Press, New York, 1965).
H. Kuzmany, Festkörperspektroskopie (Springer-Verlag, Berlin, 1989).
Latimer, I.D., St. John, R.M., Phys. Rev. A 1, 1612 (1970). CrossRef
Sanches, J.A., Blanco, F., Garcia, G., Campos, J., Phys. Scripta 39, 243 (1989). CrossRef
Vujnovic, V., Wiese, W.L., Chem. Ref. Data 21, 919 (1992). CrossRef
Bogdanova, I.P., Yurgenson, S.V., Opt. Spectros. (USSR) 68, 730 (1990).
Wiese, W.L., Brault, J.W., Danzmann, K., Helbig, V., Koch, M., Phys. Rev. A 39, 2461 (1989). CrossRef
Dony, M.F., Debal, F., Wautelet, M., Dauchot, J.P., Hecq, M., Bretagne, J., Leray, P., Ricard, A., J. Phys. III France 7, 1869 (1997). CrossRef
Lennon, M.A., Bell, K.L., Gilbody, H.B., Hughes, J.G., Kingston, A.E., Murray, M.J., Smith, F.J., Chem. Ref. Data 17, 1285 (1988). CrossRef
Shaw, M., Campos, J., J. Quant. Spectrosc. and Radiat. Transfer 30, 73 (1983). CrossRef
Vinogradov, I.P., Jettkant, B., Meyer, D., Wiesemann, K., J. Phys. D 27, 1207 (1994). CrossRef
Imami, M., Borst, W., J. Chem. Phys. 61, 1115 (1974). CrossRef
Zubeck, M., J. Phys. B 27, 573 (1994). CrossRef
Rapp, D., Englander-Golden, P., J. Chem. Phys. 43, 1464 (1965). CrossRef
Wetzel, R.C., Baiocchi, F.A., Hayes, T.R., Freund, R.S., Phys. Rev. A 35, 559 (1987). CrossRef
Crowe, A., McConkey, J.W., J. Phys. B 6, 2108 (1973). CrossRef
T.D. Märk, Y. Hatano, F. Linder, Electron collision cross sections, in Atomic and molecular data for radiotherapy and radiation research IAEA-TECDOC-799 (IAEA, Vienna, 1995), p. 163.