Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T17:23:33.311Z Has data issue: false hasContentIssue false

Charge transport properties in nanocomposite photoanodes of DSSCs: crucial role of electronic structure

Published online by Cambridge University Press:  23 December 2011

M. Samadpour
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Islamic Republic of Iran
N. Taghavinia
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Islamic Republic of Iran Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Islamic Republic of Iran
A. Iraji-zad*
Affiliation:
Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Islamic Republic of Iran Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Islamic Republic of Iran
M. Marandi
Affiliation:
Department of Physics, Faculty of Sciences, Arak University, Arak 38156-8-8349, Islamic Republic of Iran
F. Tajabadi
Affiliation:
Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Islamic Republic of Iran
*
Get access

Abstract

TiO2 nanorods, TiO2 nanorod/TiO2 nanoparticle and TiO2 nanorod/ZnO nanoparticle composite structures were integrated as photoanodes in backside illuminated dye-sensitized solar cells (DSSCs). Incorporation of TiO2 nanoparticles into the bare nanorods increased the dye loading and improved the short-circuit current density (Jsc) from 2.22 mA/cm2 to 3.57 mA/cm2. ZnO nanoparticles electrochemically grown into the TiO2 nanorod layer could increase the surface area. Nevertheless, this considerably reduced the Jsc to 0.57 mA/cm2 and consequently cell efficiency. Electrochemical impedance spectroscopy (EIS) results showed that ZnO incorporated samples have better effective diffusion coefficient of electrons in comparison with bare TiO2 nanorods while the recombination rate of injected electrons to photoanode with electrolyte is near eight times faster than bare TiO2 nanorods. ZnO incorporated samples showed lower electron density at steady state in the conduction band also. The worse performance of ZnO incorporated samples was attributed to lower electron injection efficiency from excited dye molecules. Monitoring electron transport properties of the cells measured by EIS pointed out the crucial role of electronic structure of composite film components on the performance of cells. Our results showed that EIS technique could be used as an efficient characterization method for precise monitoring of charge transport in nanocomposite photoanodes for DSSCs.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Regan, B., Gratzel, M., Nature 353, 737 (1991)CrossRef
Gratzel, M., Acc. Chem. Res. 42, 1788 (2009)CrossRef
Peter, L.M., Phys. Chem. Chem. Phys. 9, 2630 (2007)CrossRef
Dhungel, S.K., Park, J.G., Renew. Energy 35, 2776 (2010)CrossRef
Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Pechy, P., Gratzel, M., Prog. Photovolt. Res. Appl. 15, 603 (2007)CrossRef
Bisquert, J., Cahen, D., Hodes, G., Ruhle, S., Zaban, A., J. Phys. Chem. B 108, 8106 (2004)CrossRef
Gonzalez-Vazquez, J.P., Anta, J.A., Bisquert, J., Phys. Chem. Chem. Phys. 11, 10359 (2009)CrossRef
Kang, S.H., Choi, S.H., Kang, M.S., Kim, J.Y., Kim, H.S., Hyeon, T., Sung, Y.E., Adv. Mater. 20, 54 (2008)CrossRef
Lee, B.H., Song, M.Y., Jang, S.Y., Jo, S.M., Kwak, S.Y., Kim, D.Y., J. Phys. Chem. C 113, 21453 (2009)CrossRef
Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P., Walker, A.B, J. Am. Chem. Soc. 130, 13364 (2008)CrossRef
Liu, B., Aydil, E.S., J. Am. Chem. Soc. 131, 3985 (2009)CrossRef
Stergiopoulos, T., Valota, A., Likodimos, V., Speliotis, T., Niarchos, D., Skeldon, P., Thompson, G.E., Falaras, P., Nanotechnology 20, 365601 (2009)CrossRef
Chuangchote, S., Sagawa, T., Yoshikawa, S., Appl. Phys. Lett. 93, 033310 (2008)CrossRef
Koo, B., Park, J., Kim, Y., Choi, S.H., Sung, Y.E., Hyeon, T., J. Phys. Chem. B 110, 24318 (2006)CrossRef
Chen, J.G., Chen, C.Y., Wu, C.G., Lin, C.Y., Lai, Y.H., Wang, C.C., Chen, H.W., Vittal, R., Ho, K.C., J. Mater. Chem. 20, 7201 (2010)CrossRef
Ku, C.H., Wu, J.J., Nanotechnology 18, 505706 (2007)CrossRef
Shin, K., Jim, Y., Han, G.Y., Park, J.H., J. Nanosci. Nanotechnol. 9, 7436 (2009)
Yodyingyong, S., Zhang, Q., Park, K., Dandeneau, C.S., Zhou, X., Triampo, D., Cao, G., Appl. Phys. Lett. 96, 073115 (2010)CrossRef
Cao, Y., Bai, Y., Yu, Q., Cheng, Y., Liu, S., Shi, D., Gao, F., Wang, P., J. Phys. Chem. C 113, 6290 (2009)CrossRef
Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L., Jpn J. Appl. Phys. 45, L638 (2006)CrossRef
De Jongh, P.E., Vanmaekelbergh, D., Phys. Rev. Lett. 77, 3427 (1996)CrossRef
Schlichthorl, G., Huang, S.Y., Sprague, J., Frank, A.J., J. Phys. Chem. B 101, 8141 (1997)CrossRef
Ahn, K.S., Kang, M.S., Lee, J.K., Shin, B.C., Lee, J.W., Appl. Phys. Lett. 89, 013103 (2006)CrossRef
Kumara, G.R.R.A., Murakami, K., Shimomura, M., Velauthamurty, K., Premalal, E.V.A., Rajapakse, R.M.G., Bandara, H.M.N., J. Photochem. Photobiol. A: Chem. 215, 1 (2010)CrossRef
Im, J.S., Lee, S.K., Lee, Y.S., Appl. Surf. Sci. 257, 2164 (2011)CrossRef
Mou, J., Zhang, W., Fan, J., Deng, H., Chen, W., J. Alloys Compd. 509, 961 (2011)CrossRef
Cheng, P., Deng, C., Dai, X., Li, B., Liu, D., Xu, J., J. Photochem. Photobiol. A: Chem. 195, 144 (2008)CrossRef
Kaidashev, E.M., Lorenz, M., Von Wenckstern, H., Rahm, A., Semmelhack, H.C., Han, K.H., Benndorf, G., Bundesmann, C., Hochmuth, H., Grundmann, M., Appl. Phys. Lett. 82, 3901 (2003)CrossRef
Gratzel, M., Nature 414, 338 (2001)CrossRef
Zhang, Q., Dandeneau, C.S., Zhou, X., Cao, C., Adv. Mater. 21, 4087 (2009)CrossRef
Wang, Y., Sun, Y., Li, K., Mater. Lett. 63, 1102 (2009)CrossRef
Park, N.G., Kang, M.G., Kim, K.M., Ryu, K.S., Chang, S.H., Kim, D.K., Van de Lagemaat, J., Benkstein, K.D., Frank, A.J., Langmuir 20, 4246 (2004)CrossRef
Wang, P., Wang, L.D., Li, B., Qiu, Y., Chinese Phys. Lett. 22, 2708 (2005)
Hafez, H., Lan, Z., Li, Q., Wu, J., Nanotechnol. Sci. Appl. 3, 45 (2010)CrossRef
Roy, P., Kim, D., Paramasivam, I., Schmuki, P., Electrochem. Commun. 11, 1001 (2009)CrossRef
Tan, B., Wu, Y., J. Phys. Chem. B 110, 15932 (2006)CrossRef
Wu, J.M., J. Cryst. Growth 269, 347 (2004)CrossRef
Pauporté, T., Yoshida, T., J. Mater. Chem. 16, 4529 (2006)CrossRef
Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y., Isoda, S., J. Phys. Chem. B 110, 13872 (2006)CrossRef
Niinobe, D., Makari, Y., Kitamura, T., Wada, Y., Yanagida, S., J. Phys. Chem. B 109, 17892 (2005)CrossRef
Pang, S., Xie, T., Zhang, Y., Wei, X., Yang, M., Wang, D., Du, Z., J. Phys. Chem. C 111, 18417 (2007)CrossRef
Thavasi, V., Renugopalakrishnan, V., Jose, R., Ramakrishna, S., Mater. Sci. Eng. R: Rep. 63, 81 (2009)CrossRef
Tennakone, K., Bandara, J., Bandaranayake, P.K.M., Kumara, G.R.A., Konno, A., Jpn J. Appl. Phys. 40, L732 (2001)CrossRef