Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T15:17:14.540Z Has data issue: false hasContentIssue false

Charge transport limited by grain boundaries in polycrystalline octithiophene thin film transistors

Published online by Cambridge University Press:  24 July 2002

R. Bourguiga*
Affiliation:
Faculté des Sciences de Bizerte, 7021 Jarzouna-Bizerte, Tunisia Laboratoire de Physique de la Matière Condensée, Groupe Matériaux Moléculaires et Polymères, Campus Universitaire, 1060 Tunis, Tunisia
G. Horowitz
Affiliation:
Laboratoire des Matériaux Moléculaires, CNRS, 2 rue Henry-Dunant, 94320 Thiais, France
F. Garnier
Affiliation:
Laboratoire des Matériaux Moléculaires, CNRS, 2 rue Henry-Dunant, 94320 Thiais, France
R. Hajlaoui
Affiliation:
Laboratoire des Matériaux Moléculaires, CNRS, 2 rue Henry-Dunant, 94320 Thiais, France
S. Jemai
Affiliation:
Laboratoire de Physique de la Matière Condensée, Groupe Matériaux Moléculaires et Polymères, Campus Universitaire, 1060 Tunis, Tunisia
H. Bouchriha
Affiliation:
Laboratoire de Physique de la Matière Condensée, Groupe Matériaux Moléculaires et Polymères, Campus Universitaire, 1060 Tunis, Tunisia
Get access

Abstract

Organic filed-effect transistor (OFETs) based on polycrystalline “octithiophene” has been realized. The current-voltage characteristics at low drain voltage has been used to derive the mobility of organic field effects transistors (OFETs). It appears that the data must be corrected for the substantial source and drain contact resistance. The carrier mobility is found to increase quasi linearly with gate voltage at room temperature. The temperature dependent measurements show that the mobility is thermally activated and becomes practically temperature independent at low temperatures. A model based on trapping mechanism, in which it is assumed that charge transport is limited by grain boundaries, has been used to describe the carrier mobility in polycrystalline “octithiophene” thin film transistors measured at temperatures ranging from 10 K to 300 K.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shur, M., Hack, M., J. Appl. Phys. 55, 3831 (1984) CrossRef
Dimitrakopoulos, C.D., Brown, A.R., Pomp, A., J. Appl. Phys. 80, 2501 (1996)
Horowitz, G., Fichou, D., Peng, X., Xu, Z., Garnier, F., Solid State Commun. 72, 381 (1983) CrossRef
Mamyama, Y., Mol. Cryst. Liq. Cryst. 171, 287 (1989)
Garnier, F., Horowitz, G., Peng, X., Fichou, D., Adv. Mater. 2, 592 (1990) CrossRef
Brown, A.R., Pomp, A., Hart, C.M., Deleeuw, D.M., Science 270, 972 (1995) CrossRef
Akimichi, H., Waragai, K., Hotta, S., Kano, H., Sakaki, H., Appl. Phys. Lett. 58, 1500 (1991) CrossRef
Brown, A.R., Janett, C.P., Deleeuw, D.M., Matters, M., Synth. Metal. 88, 37 (1997) CrossRef
Vissenberg, M.C.J.M., Matters, M., Phys. Rev. B 57, 12964 (1998) CrossRef
Torsi, L., Dodabalapur, A., Rothberg, L.J., Fung, A.W.P., Katz, H.E., Phys. Rev. B 57, 2271 (1998) CrossRef
Holtsein, T., Ann. Phys. 8, 343 (1959)
Waragai, K., Akimichi, H., Hotta, S., Kano, H., Phys. Rev. B 52, 1786 (1995) CrossRef
Horowitz, G., Delannoy, P., J. Appl. Phys. 70, 469 (1991) CrossRef
Horowitz, G., Hajlaoui, R., Delannoy, P., J. Phys. III France 5, 355 (1995) CrossRef
Le Comber, P.G., Spear, W.E., Phys. Rev. Lett. 25, 509 (1970) CrossRef
Horowitz, G., Hajlaoui, R., Bourguiga, R., Hajlaoui, M., Synth. Metal. 101, 401 (1999) CrossRef
Horowitz, G., Hajlaoui, M., Hajlaoui, R., J. Appl. Phys. 87, 4456 (2000) CrossRef
Ortan, J.W., Powell, M.J., Rep. Prog. Phys. 43, 1263 (1980) and references therein CrossRef
Horowitz, G., Hajlaoui, R., Kouki, F., Eur. Phys. J. AP 1, 361 (1998) CrossRef
Lovinger, A.J., Davis, D.D., Ruel, R., Torsi, L., Dodabalapur, A., Katz, H.E., J. Mater. Rev. 10, 2358 (1995) CrossRef
G. Horowitz, M.E. Hajlaoui, to be published
Haddon, R.C., Siegrist, T., Fleming, R.M., Bridenbangh, P.M., Landise, R.A., J. Mater. Chem. 5, 1719 (1995) CrossRef
Karl, N., Marktanner, J., Stehle, R., Warta, W., Synth. Metal. 42, 2473 (1991) CrossRef
Horowitz, G., Peng, X., Fichou, D., Garnier, F., J. Appl. Phys. 67, 528 (1990) CrossRef
Tsumura, A., Koezuka, H., Ando, T., Synth. Metal. 25, 11 (1991) CrossRef
Bunroughes, J.H., Jones, C.A., Friend, R.H., Nature 335, 137 (1989) CrossRef
S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981), p. 433
Horowitz, G., Hajlaoui, R., Bouchriha, H., Bourguiga, R., Hajlaoui, M., Adv. Mater. 10, 923 (1998) 3.0.CO;2-W>CrossRef
Horowitz, G., Hajlaoui, R., Fichou, D., El Kassmi, A., J. Appl. Phys. 85, 3202 (1999) CrossRef
Jain, S., IEE Proc. Pt. I 135, 162 (1988)
Nelson, S.F., Lin, Y.Y., Gundlach, D.J., Jackson, T.N., Appl. Phys. Lett. 72, 1854 (1998) CrossRef