Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T11:05:06.121Z Has data issue: false hasContentIssue false

Charge storage characteristics of atomic layer deposited ZrO2/Al2O3 multilayered films

Published online by Cambridge University Press:  12 December 2012

Zhenjie Tang*
Affiliation:
College of Physics and Electrical Engineering, Anyang Normal University, Anyang 45500, P.R. China
Rong Li
Affiliation:
School of Mathematics and Statistics, Anyang Normal University, Anyang 45500, P.R. China
Xinhua Zhu
Affiliation:
Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P.R. China
Zhiguo Liu
Affiliation:
Department of Materials Science and Engineering, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P.R. China
*
Get access

Abstract

The multilayered films-based charge trap flash memory cells were fabricated by incorporating high-k ZrO2/Al2O3 nanolaminates as charge trapping layer and amorphous Al2O3 as tunneling and blocking layers. The thickness of high-k ZrO2 or Al2O3 film in charge trapping layer after annealing treatment was about 1.5 nm for each layer. The charge storage characteristics of such memory cells were measured, and the results demonstrated that they had a large hysteresis memory window of 3.85 V at a sweeping gate voltage of ±8 V, an excellent endurance up to 105 write/erase cycles and a small charge loss of 9.6% after 10 years.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burkhardt, M., Jedaa, A., Novak, M., Ebel, A., Voitchovsky, K., Stellacci, F., Hirsch, A., Halik, M., Adv. Mat. 22, 2525 (2010)CrossRef
Naber, R.C.G., Asadi, K., Blom, P.W.M., de Leeuw, D.M., de Boer, B., Adv. Mat. 22, 933 (2010)CrossRef
Tseng, R.J., Huang, J.X., Ouyang, J., Kaner, R.B., Yang, Y., Nano Lett. 5, 1077 (2005)CrossRef
Lee, S.H., Jung, Y., Agarwal, R., Nature Nanotechnol. 2, 626 (2007)CrossRef
Kozicki, M.N., Gopalan, C., Balakrishnan, M., Mitkova, M., IEEE Trans. Nanotechnol. 5, 535 (2006)CrossRef
Bu, J.K., White, M.H., Solid-State Electron. 45, 47 (2001)CrossRef
Hwang, J.R., Lee, T.L., Ma, H.C., Lee, T.C., Chung, T.H., Chang, C.Y., Liu, S.D., Perng, B.C., Hsu, J.W., Lee, M.Y., Ting, C.Y., Huang, C.C., Shieh, J.H., Yang, F.L., Tech. Dig. Int. Electron Devices Meet., 154 (2005)
Tan, Y.N., Chim, W.K., Cho, B.J., Choi, W.K., IEEE Trans. Electron Devices 51, 1143 (2004)CrossRef
Kim, J.H., Choi, J.B., IEEE Trans. Electron Devices 51, 2048 (2004)CrossRef
Zhu, X., Yang, Y., Li, Q., Ioannou, D.E., Suehle, J.S., Richter, C.A., Microelectron. Eng. 85, 2403 (2008)CrossRef
Pan, T.M., Yu, T.Y., Wang, C.C., J. Electrochem. Soc. 155, G218 (2008)CrossRef
Zhou, Y., Yin, J., Xu, H.N., Xia, Y.D., Liu, Z.G., Li, A.D., Gong, Y.P., Pu, L., Yan, F., Shi, Y., Appl. Phys. Lett. 97, 143504 (2010)CrossRef
Maikap, S., Wang, T.Y., Tzeng, P.J., Lin, C.H., Tien, T.C., Lee, L.S., Yang, J.R., Tsai, M.J., Appl. Phys. Lett. 90, 262901 (2007)CrossRef
Ng, T.H., Chim, W.K., Choi, W.K., Ho, V., Teo, L.W., Du, A.Y., Tung, C.H., Appl. Phys. Lett. 84, 4385 (2004)CrossRef
Lai, C.S., Fan, K.M., Peng, H.K., Lin, S.J., Lee, C.Y., Ai, C.F., Appl. Phys. Lett. 90, 172904 (2007)CrossRef
Tan, Y.N., Chim, W.K., Choi, W.K., Joo, M.S., Cho, B.J., IEEE Trans. Electron Devices 53, 654 (2006)CrossRef
Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001)CrossRef
Afanas’ev, V., Houssa, M., Stesmans, A., Merckling, C., Schram, T., Kittl, J.A., Appl. Phys. Lett. 99, 072103 (2011)CrossRef
Front-end processing in International Technology Roadmap for Semiconductors (ITRS) 2009, p. 12
You, H.W., Cho, W.J., Appl. Phys. Lett. 96, 093506 (2010)CrossRef
Liu, P.T., Ko, Z.H., Lai, Z.J., Chung, Y., IEEE Trans. Electron Devices 38, 344 (1991)CrossRef
Tang, Z.J., Xu, H.N., Li, H.T., Chen, Y., Xia, Y.D., Yin, J., Zhu, X.H., Liu, Z.G., Li, A.D., Yan, F., Microelectron. Eng. 88, 3227 (2011)CrossRef
Haddad, S., Chang, C., Swaminathan, B., Lien, J., IEEE Electron Device Lett. 10, 117 (1989)CrossRef
Yamada, S., Hiura, Y., Yamane, T., Amemiya, K., Oshima, Y., Yoshikawa, K., Tech. Dig. Int. Electron Devices Meet., 23 (1993)
Tsai, C.Y., Lee, T.H., Cheng, C.H., Chin, A., Wang, H., Appl. Phys. Lett. 97, 213504 (2010)CrossRef
Yang, Y., White, M.H., Solid-State Electron. 44, 949 (2000)CrossRef
Tang, Z.J., Xia, Y.D., Xu, H.N., Yin, J., Liu, Z.G., Li, A.D., Liu, X.J., Yan, F., Ji, X.L., Electrochem. Solid-State Lett. 14, G13 (2011)CrossRef
Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000)CrossRef