Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T10:13:42.259Z Has data issue: false hasContentIssue false

Charge stability on thin insulators studied by atomic force microscopy

Published online by Cambridge University Press:  15 November 2000

N. Felidj
Affiliation:
Groupe de Physique des Solides, Universités de Paris 6 et 7 (CNRS UA 17), Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France
J. Lambert
Affiliation:
Groupe de Physique des Solides, Universités de Paris 6 et 7 (CNRS UA 17), Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France
C. Guthmann
Affiliation:
Groupe de Physique des Solides, Universités de Paris 6 et 7 (CNRS UA 17), Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France
M. Saint Jean*
Affiliation:
Groupe de Physique des Solides, Universités de Paris 6 et 7 (CNRS UA 17), Tour 23, 2 place Jussieu, 75251 Paris Cedex 05, France
Get access

Abstract

Charge diffusion in thin ${\rm Al}_2{\rm O}_3$ layers has been investigated by Atomic Force Microscopy (AFM). The layers were made by anodic oxidation of Al plates, in order to obtain plane and homogeneous amorphous oxides of known thicknesses. Under dry-nitrogen atmosphere, the charges are deposited by contact electrification: a deposit voltage is applied between the Al substrate of the layer and the metallized AFM tip brought to contact with the oxide. This process is perfectly controllable and reproducible, the quantity of charges deposited being proportional to the deposit voltage. Afterwards the tip is lifted up and scans the surface of the oxide in order to observe the diffusion of the deposited charges. Two behaviors were observed for the diffusion process depending on the thickness and on the deposit voltage. These results are interpreted by introducing an inhomogeneous trap distribution in the layer, the diffusion process being considered mainly as diffusion by hopping transport in the bulk.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lowell, J., Rose-Innes, A.C., Adv. Phys. 29, 943 (1980). CrossRef
Rychkov, A.A., Cross, G.H., Gonchar, M.G., J. Phys. D. Appl. Phys. 25, 986 (1992). CrossRef
C. Noguéra, Physique et Chimie des surfaces d'oxyde (Ed. Eyrolles and CEA, 1995).
Hays, D.A., J. Chem. Phys. 61, 1455 (1974). CrossRef
Morita, S., Uchihashi, T., Okusako, T., Yamanishi, Y., Oasa, T., Sugarawa, Y., Jpn. J. Appl. Phys. 35, 5811 (1996) and references therein. CrossRef
Saint Jean, M., Hudlet, S., Guthmann, C., Berger, J., Eur. Phys. J. B 12, 471 (1999). CrossRef
Siejka, J., Nadai, J.P., Amsel, G., J. Electrochem. Soc. 118, 727 (1971). CrossRef
Watts, J.F., Vacuum 45, 653 (1994). CrossRef
Hudlet, S., Saint Jean, M., Royer, D., Berger, J., Guthmann, C., Rev. Sci. Instrum. 66, 2848 (1995). CrossRef
Terris, B.D., Stern, J.E., Rugar, D., Mamin, H.J., Phys. Rev. Lett. 63, 2669 (1989). CrossRef
Lowell, J., J. Phys. D Appl. Phys. 12, 1541 (1974). CrossRef
M. Saint Jean, C. Guthmann (to be published).
P. Hesto, Instabilities in silicon devices, edited by G. Barbottin, A. Vapaille (Elsevier Science Publishers B.V., North Holland, 1986), p. 263.
Rudenko, A.I., Arkhipov, V.I., Philos. Mag. B 45, 177 (1982). CrossRef
Arkhipov, V.I., Rudenko, A.I., Philos. Mag. B 45, 189 (1982). CrossRef
Rudenko, A.I., Arkhipov, V.I., Philos. Mag. B 45, 209 (1982). CrossRef
Krause, H., Phy. Stat. Sol. A 52, 565 (1979). CrossRef
Krause, H., Phy. Stat. Sol. A 36, 705 (1976). CrossRef
N. Cusack, The Electrical and Magnetic Properties of Solids (Ed. Longmans, 1958), p. 230.
Lundström, I., Svensson, Ch., J. Appl. Phys. 43, 5045 (1972). CrossRef
Brennan, W.J., Lowell, J., O'Neill, M.C., Wilson, M.P.W., J. Phys. D Appl. Phys. 25, 1513 (1992). CrossRef