Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:30:07.822Z Has data issue: false hasContentIssue false

Characteristics of FeSi2 quantum dots on silicon

Published online by Cambridge University Press:  15 July 2004

L. Dózsa*
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
E. Horváth
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
G. Molnár
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
A. L. Tóth
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
Z. Vértesy
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
E. Vázsonyi
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
G. Petö
Affiliation:
Research Institute for Technical Physics and Materials Science, H-1525 P. O. Box 49, Budapest, Hungary
Get access

Abstract

Self-assembled β-FeSi2 quantum (QD) dots were grown on n-type Si and investigated in this work. Secondary electron images show the shape and distribution of the quantum dots depends on the temperature and thickness of the Fe deposition. Electrical characteristics were measured in MIS devices prepared by covering the quantum dots by an oxide or by a photoresist layer. The cold deposited and subsequently annealed Fe layers were found to generate large concentration of deep level defects, compensating the upper few microns layer of the silicon wafer. Reactive deposition epitaxy (RDE) growth of QDs – where the iron is deposited on hot substrate—generated much lower concentration of defect, in some devices with characteristics comparable to the reference wafer. The significant scatter on the surface is attributed to inhomogeneous growth conditions and to residual surface contamination on the surface.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reader, A. H., van Ommen, A. H., Weijs, P. J. W., Wolters, R. A. M., Oostra, D. J., Rep. Prog. Phys. 56, 1397 (1992) CrossRef
Chu, W. K., Lau, S. S., Mayer, J. W., Müller, H., Tu, K. N., Thin Solid Films 25, 393 (1975) CrossRef
Bost, J. E. Mahan, J. Appl. Phys. 64, 2034 (1988) CrossRef
Mahan, J. E., Geib, K. M., Robinson, G. Y., Long, R. G., Xinghua, Y., Bai, G., Nicolet, M. A., Nathan, M., Appl. Phys. Lett. 56, 2126 (1990) CrossRef
Lau, S. S., Feng, J. S.-Y., Olowolafe, J. O., Nicolet, M.-A., Thin Solid Films 25, 415 (1975) CrossRef
Cheng, H. C., Yew, T. R., Chen, L. J., J. Appl. Phys. 57, 5246 (1985) CrossRef
Molnár, G., Petö, G., Zsoldos, E., Horváth, Z. E., Khanh, N. Q., Mat. Res. Symp. Proc. 402, 337 (1996) CrossRef
Jacak, L., Eur. J. Phys. 21, 487 (2000) CrossRef
Schukin, V. A., Bimberg, D., Appl. Phys. A 67, 687 (1998) CrossRef
Barabási, A.-L., Appl. Phys. Lett. 70, 2565 (1997) CrossRef
Kamins, T. I., Williams, R. S., Chen, Y., Chang, Y. L., Chang, Y. A., Appl. Phys. Lett. 76, 562 (2000) CrossRef
Goldfarb, I., Briggs, G. A. D., Phys. Rev. B 60, 4800 (1999) CrossRef
Chen, Y., Ohlberg, D. A. A., Medeiros-Ribeiro, G., Chang, Y. A., Williams, R. S., Appl. Phys. Lett. 76, 4004 (2000) CrossRef
Nogami, J., Liu, B. Z., Katkov, M. V., Ohbuchi, C., Birge, N. O., Phys. Rev. B 63, 233305 (2001) CrossRef
Suemasu, T., Tanaka, M., Fujii, T., Hashimoto, S., Kumagai, Y., Hasegawa, F., Jpn J. Appl. Phys. 36, L1225 (1997) CrossRef