Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T12:44:14.827Z Has data issue: false hasContentIssue false

Carrier lifetime influence on clamped silicon wafer resonance by PTA effect

Published online by Cambridge University Press:  16 April 2010

C. Chapus*
Affiliation:
Laboratoire IES, UMR CNRS 5214, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
F. Augereau
Affiliation:
Laboratoire IES, UMR CNRS 5214, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
J. Podlecki
Affiliation:
Laboratoire IES, UMR CNRS 5214, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
G. Lévêque
Affiliation:
Laboratoire IES, UMR CNRS 5214, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
A. Foucaran
Affiliation:
Laboratoire IES, UMR CNRS 5214, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
J. Attal
Affiliation:
Laboratoire IES, UMR CNRS 5214, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier, France
Get access

Abstract

This experimental work presents reproducible measurement conditions to allow amplification of the mechanical vibration generated by photo-thermo-acoustics (PTA) effect using the resonance of circular silicon membranes clamped by nitrile o-rings on a diameter of 30 mm (Di ). We use wafers with various thickness (h) between 250 and 1000 μm and with carrier lifetime between 3 and 30 μs. Under the condition to have a resolution of few picometers for the measurement, it is possible to characterize the resonance mechanism obtained without contact by conventional laser vibrometry using a modulated laser diode of only a few milliwatts of power. Compared to perfect clamped membranes, the first Eigen frequency presents a downward shift of some hundreds Hertz due to the circular clamping by o-ring as predicted by our simplified model. The resonance frequency depends linearly on the thickness as long as Di /h > 80. The quality factor (Q) does not exceed ten in agreement with our model for spring loaded membrane in air. The low value of quality factor and its variation according to thickness follow our predictions. Moreover, Q is independent of carrier lifetime whereas first resonance amplitude increases with it but less than prediction for bulks.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mc Donald, F.A., Wetsel Jr, G.C.., J. Appl. Phys. 49, 2313 (1978) CrossRef
Arnold, W., Betz, B., Hoffman, B., Appl. Phys. Lett. 47, 672 (1985) CrossRef
Stearns, R.G., Kino, G.S., Appl. Phys. Lett. 47, 1048 (1985) CrossRef
Fournier, D., Boccara, C., Skumanich, A., Amer, N.M., J. Appl. Phys. 59, 787 (1986) CrossRef
Todorovic, D.M., Nikolic, P.M., Bojicic, A.I., Radulovic, K.T., Phys. Rev. B 55, 15631 (1997) CrossRef
Pinto Neto, A., Vergas, H., Leite, N.F., Miranda, L.C.M., Phys. Rev. B 41, 9971 (1990) CrossRef
Kuwahata, H., Muto, N., Uehara, F., Jpn J. Appl. Phys. 39, 3169 (2000) CrossRef
Andrusenko, D.A., Kucherov, I.Ya., Tech. Phys. 44, 1397 (1999) CrossRef
Rosencwaig, A., White, R.M., Appl. Phys. Lett. 38, 165 (1981) CrossRef
N. Kultscher, L.J. Balk, Scanning Electron. Microsc. IV, 33 (1986)
Guckel, H., Larsen, S., Lagally, M.G. et al., Appl. Phys. Lett. 31, 618 (1977) CrossRef
J. Frömel, D. Billep, T. Gessner, M. Wiener, Microsyst. Technol. 12, 481 (2006)
Zwickl, B.M., Shanks, W.E., Jayich, A.M. et al., Appl. Phys. Lett. 92, 103125 (2008) CrossRef
Sun, Y., Fang, D., Soh, A.K., Int. J. Solids Struct. 43, 3213 (2006) CrossRef
E. Dieulesaint, D. Royer, C. Bonnefoy, IEEE Trans. Sonics Ultrasonics SU-29, 176 (1982)
Martydessus, D., Zejjari, M.E., Boughanmi, N., Boucher, J., Franceschi, J.L., J. Phys. III France 2, 1509 (1992) CrossRef
Severac, H., Mousseigne, M., Franceschi, J.L., J. Phys. III France 6, 1451 (1996) CrossRef
M. Gerardin, D. Rixen, Théorie des vibrations, 2nd edn. (Masson, Paris, 1996)
E. Ventsel, T. Krauthammer, Thin Plates and Shells (Marcel Dekker, New York, 2001)
N.H. Fletcher, T.D. Rossing, The Physics of Musical Instruments, 2nd edn. (Springer-Verlag, New York, 2000)