Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T22:53:06.643Z Has data issue: false hasContentIssue false

Calibration-free laser induced breakdown spectroscopy as an alternative method for found meteorite fragments analysis

Published online by Cambridge University Press:  21 April 2014

Michaela Horňáčková*
Affiliation:
Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia
Jozef Plavčan
Affiliation:
Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia
Jozef Rakovský
Affiliation:
Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia
Vladimír Porubčan
Affiliation:
Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia Slovak Academy of Sciences, Astronomical Institute, 05960 Tatranská Lomnica, Slovakia
Daniel Ozdín
Affiliation:
Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 84215 Bratislava, Slovakia
Pavel Veis
Affiliation:
Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia
*
Get access

Abstract

Calibration-free laser induced breakdown spectroscopy (CF-LIBS) was used for the determination of elemental composition and quantitative analysis of the Košice meteorite by means of time resolved and broadband emission spectroscopy (200–1000 nm). The electron temperature was determined using the Saha-Boltzmann plot method and the electron density from Stark broadening of the hydrogen Hα line (656 nm). Apart from magnesium, silicon and iron, which are the main elemental constituents of examined meteorite fragments, elements such as aluminum, nickel, potassium, sodium, chromium, calcium and manganese were also identified in the obtained LIBS spectra. Concentrations of Al, Ca, Cr, Fe, Mg, Mn, Na, Ni and Si were calculated using the calibration free approach and results were compared with ones obtained from the ICP-MS analyses. For the increase of the CF-LIBS accuracy, a selection of spectral lines was performed. Considering the transition probability, the population of absorbing level, the degree of ionization and predicted elemental concentration we calculated the probability of self-absorption and, consequently, spectral lines with highest self-absorption probability were rejected. CF-LIBS can be used as an alternative method for the meteorite fragments analysis (including the inner part and crust), because this method is quasi non-destructive and therefore analysis of all found fragments with minimal destruction is possible.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borovička, J., Tóth, J., Igaz, A., Spurný, P., Kalenda, P., Haloda, J., Svoreň, J., Kornoš, L., Silber, E., Brown, P., Husárik, M., Meteorit. Planet. Sci. 48, 1757 (2013)CrossRef
Gritsevich, M., Ninnikov, V., Kohout, T., Tóth, J., Peltoniemi, J., Torchak, L., Virtanem, J., Meteorit. Planet. Sci. (2014), DOI: 10.1111/maps.12252
Ozdin, D., Plavčan, J., Horňáčková, M., Uher, P., Porubčan, V., Veis, P., Rakovský, J., Tóth, J., Konečný, P., Svoreň, J., Meteorit. Planet. Sci. (2014), to be published
Classen, N., meteoris.de (2006), http://www.meteoris.de/class/OC-Main.html
Praher, B., Palleschi, V., Viskup, R., Heitz, J., Pedarnig, J.D., Spectrochim. Acta Part B 65, 671 (2010)CrossRef
Shoursheini, S.Z., Sajad, B., Parvin, P., Opt. Lasers Eng. 48, 89 (2010)CrossRef
Aguilera, J.A., Aragón, C., Cristoforetti, G., Tognoni, E., Spectrochim. Acta Part B 64, 685 (2009)CrossRef
Corsi, M., Cristoforetti, G., Hidalgo, M., Legnaioli, S., Palleschi, V., Salvetti, A., Tognoni, E., Vallebona, Ch., Appl. Geochem. 21, 748 (2006)CrossRef
Burakov, V.S., Raikov, N.S., Spectrochim. Acta Part B 62, 217 (2007)CrossRef
Jašík, J., Heitz, J., Pedarnig, J.D., Veis, P., Spectrochim. Acta Part B 64, 1128 (2009)CrossRef
Viskup, R., Praher, B., Linsmeyer, T., Scherndl, H., Pedarnig, J.D., Heitz, J., Spectrochim. Acta Part B 65, 935 (2010)CrossRef
Galiová, M., Kaiser, J., Novotný, K., Samek, O., Reale, L., Malina, R., Pálenková, K., Liška, M., Čudek, V., Kanický, V., Otruba, V., Poma, A., Tucci, A., Spectrochim. Acta Part B 62, 1597 (2007)CrossRef
Kaiser, J., Galiová, M., Novotný, K., Červenka, R., Reale, L., Novotný, J., Liška, M., Samek, O., Kanický, V., Hrdlička, A., Stejskal, K., Adam, V., Kizek, R., Spectrochim. Acta Part B 64, 67 (2009)CrossRef
Colao, F., Fantoni, R., Lazic, V., Paolini, A., Fabbri, F., Ori, G.G., Marinangeli, L., Baliva, A., Planet. Space Sci. 52, 117 (2004)CrossRef
De Giacomo, A., Dell’Aglio, M., De Pascale, O., Longo, S., Capitelli, M., Spectrochim. Acta Part B 62, 1606 (2007)CrossRef
Dell’Aglio, M., De Giacomo, A., Gaudiuso, R., De Pascale, O., Senesi, G.S., Longo, S., Geochim. Cosmochim. Acta 74, 7329 (2010)CrossRef
Gigosos, M.A., González, M.Á., Cardenoso, V., Spectrochim. Acta Part B 58, 1489 (2003)CrossRef
Aragón, C., Aguilera, J.A., Spectrochim. Acta Part B 63, 893 (2008)CrossRef
Tognoni, E., Cristoforetti, G., Legnaioli, S., Palleschi, V., Salvetti, A., Mueller, M., Panne, U., Gornushkin, I., Spectrochim. Acta Part B 62, 1287 (2007)CrossRef
Rakovský, J., Krištof, J., Čermák, P., Kociánová, M., Veis, P., in Proceedings of Contributed Papers Part II: Physics of Plasma and Ionized Media, Praha, 2011, edited by Šafránková, J., Pavlů, J., pp. 257262
Ralchenko, Y., Kramida, A.E., Reader, J., NIST ASD Team, NIST Atomic Spectra Database (ver. 4.1.0) [Online]. http://physics.nist.gov/asd [2012] (National Institute of Standards and Technology, Gaithersburg, MD, 2011)Google Scholar
Kurucz, R.L., Bell, B., Atomic Line Data, Kurucz CD-ROM No. 23 (Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, 1995)Google Scholar
Aguilera, J.A., Aragón, C., Spectrochim. Acta Part B 62, 378 (2007)CrossRef
Hutchison, R., Meteorites: A Petrologic, Chemical and Isotopic Synthesis (Cambridge University Press, New York, 2006), p. 506Google Scholar