Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T20:55:54.810Z Has data issue: false hasContentIssue false

Broadside-coupled triangular split-ring-resonators for terahertz sensing

Published online by Cambridge University Press:  08 March 2013

Cumali Sabah*
Affiliation:
Department of Electrical and Electronics Engineering, Middle East Technical University, Northern Cyprus campus, Kalkanli, Guzelyurt, TRNC, Mersin 10, Turkey
Hartmut G. Roskos
Affiliation:
Johann Wolfgang Goethe-Universität, Physikalisches Institut, Max-von-Laue str. 1, D-60438 Frankfurt am Main, Germany
*
Get access

Abstract

In this study, broadside-coupled triangular split-ring-resonators are designed and simulated as THz sensors. Their double-side sensing capability provides sensitivity enhancement compared with singlesided sensors. The material to be detected is modeled as an over-layer on the structure. The ensuing change of the transmission resonances is investigated as a function in the thickness and permittivity of the substrate and of the one- or two-sided over-layer. The propagation direction of the incident wave also allows to select the excited mode (via the polarization of the radiation) which provides additional flexibility to the proposed sensor device by the possibility to operate it over a larger frequency range. Overall, the polarization dependency of the structure, the double-side sensing and the high sensitivity make such structures attractive as THz sensors.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., IEEE Trans. Microwave Theor. Tech. 47, 2075 (1999)CrossRef
Engheta, N., Ziolkowski, R.W., Metamaterials – Physics and Engineering Explorations (Wiley, IEEE Press, Piscataway, NJ, 2006)Google Scholar
Niu, J.-X., Zhou, X.-L., Wu, L.-S., Progress Electromagn. Res. 75, 153 (2007)CrossRef
Alici, K.B., Ozbay, E., Phys. Stat. Solidi B 244, 1192 (2007)CrossRef
Sabah, C., Uckun, S., Progress Electromagn. Res. 91, 349 (2009)CrossRef
Huang, M., Yang, J., in Wave Propagation, edited by Petrin, Andrey, (Rijeka, Croatia, 2011), p.1336Google ScholarPubMed
Ishimaru, A., Jaruwatanadilok, S., Kuga, Y., Progress Electromagn. Res. 51,139 (2005)CrossRef
Al-Naib, I.A.I., Jensen, C., Koch, M., Appl. Phys. Lett. 93, 083507 (2008)CrossRef
Melik, R., Unal, E., Puttlitz, C., Demir, H.V., Appl. Phys. Lett. 95, 011106 (2009)CrossRef
He, X.-J., Wang, Y., Wang, J.-M., Gui, T.-L., Microsys. Technol. 16, 1735 (2010)CrossRef
Driscoll, T., Andreev, G.O., Basov, D.N., Palit, S., Cho, S.Y., Jokerst, N.M., Smith, D.R., Appl. Phys. Lett. 91, 062511 (2007)CrossRef
Debus, C., Bolivar, P.H., Appl. Phys. Lett. 91, 184102 (2007)CrossRef
Lahiri, B., Khokhar, A.Z., De La Rue, R.M., McMeekin, S.G., Johnson, N.P., Optic. Express 17, 1107 (2009)CrossRef
Cubukcu, E., Zhang, S., Park, Y.S., Bartal, G., Zhang, X., Appl. Phys. Lett. 95, 043113 (2009)CrossRef
Lee, H.J., Yook, J.G., Appl. Phys. Lett. 92, 254103 (2008)CrossRef
Bingham, C.M., Tao, H., Liu, X., Averitt, R.D., Zhang, X., Padilla, W.J., Optic. Express 16, 18565 (2008)CrossRef
Barber, J., Hooks, D.E., Funk, D.J., Averitt, R.D., Taylor, A.J., Babikov, D., J. Phys. Chem. A 109, 3501 (2005)CrossRef
Chen, J., Chen, Y., Zhao, H., Bastiaans, G.J., Zhang, X.-C., Optic. Express 19, 12060 (2007)CrossRef
Fischer, B.M., Walther, M., Uhd Jepsen, P., Phys. Med. Biol. 47, 3807 (2002)CrossRef
O’Hara, J.F., Singh, R., Brener, I., Smirnova, E., Han, J., Taylor, A.J., Zhang, W., Optic. Express 16, 1786 (2008)CrossRef
Tao, H., Strikwerda, A.C., Liu, M., Mondia, J.P., Ekmekci, E., Fan, K., Kaplan, D., Padilla, W.J., Zhang, X., Averitt, R., Omenetto, F.G., Appl. Phys. Lett. 97, 261909 (2010)CrossRef
Sabah, C., Roskos, H.G., Microsys. Technol. 18, 2071 (2012)CrossRef
Marques, R., Medina, F., Rafii-El-Idrissi, R., Phys. Rev. B 65, 144440 (2002)CrossRef
Marques, R., Mesa, F., Martel, J., Medina, F., IEEE Trans. Antennas Propag. 51, 2572 (2003)CrossRef
Hao, T., Stevens, C.J., Edwards, D.J., Electron. Lett. 41, 653 (2005)CrossRef
Bilotti, F., Toscano, A., Vegni, L., IEEE Trans. Antennas Propag. 55, 2258 (2007)CrossRef
Mirza, I., Sabas, J.N., Shi, S., Prather, D.W., Progress Electromagn. Res. 93, 1 (2009)CrossRef
Wang, J., Qu, S., Zhang, J., Ma, H., Yang, Y., Gu, C., Wu, X., Xu, Z., Progress Electromagn. Res. Lett. 6, 35 (2009)CrossRef
Liu, N., Liu, H., Zhu, S., Giessen, H., Nature Photonics 3, 157 (2009)CrossRef
Powell, D.A., Lapine, M., Gorkunov, M.V., Shadrivov, I.V., Kivshar, Y.S., Phys. Rev. B 82, 155128 (2010)CrossRef
Ekmekci, E., Strikwerda, A.C., Fan, K., Keiser, G., Zhang, X., Turhan-Sayan, G., Averitt, R., Phys. Rev. B 83, 193103 (2011)CrossRef
Reiten, M.T., Roy Chowdhury, D., Zhou, J., Taylor, A.J., O’Hara, J.F., Azad, A.K., Appl. Phys. Lett. 98, 131105 (2011)CrossRef
Sabah, C., Appl. Phys. A: Mater. Sci. Process. 108, 457 (2012)CrossRef
Sabah, C., Roskos, H.G., Curr. Appl. Phys. 12, 443 (2012)CrossRef
Sabah, C., Roskos, H.G., JEOS RP 7, 12005 (2012)CrossRef
Sabah, C., IEEE J. Sel. Top. Quantum Electron. 19, 8500808 (2012)CrossRef
Sabah, C., J. Electromagn. Waves Appl. 26, 1105 (2012)CrossRef
Ekmekci, E., Turhan-Sayan, G., Progress Electromagn. Res. B 12, 35 (2009)CrossRef
Sabah, C., Progress Electromagn. Res. B 25, 225 (2010)CrossRef