Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T11:26:57.812Z Has data issue: false hasContentIssue false

Biocompatibility of oxygen-plasma-treated polystyrene substrates

Published online by Cambridge University Press:  28 October 2011

A. Vesel*
Affiliation:
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
M. Mozetic
Affiliation:
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
M. Jaganjac
Affiliation:
Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
L. Milkovic
Affiliation:
Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
A. Cipak
Affiliation:
Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
N. Zarkovic
Affiliation:
Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia
*
Get access

Abstract

The biocompatibility of polystyrene (PS) samples has been improved by treatment with weakly ionized highly non-equilibrium oxygen plasma. Samples were exposed to plasma for 30 s for which they have received a dose of ions of 4.5 × 1017 m−2 and a neutral oxygen atom dose of 3 × 10−23 m−2. Both untreated and plasma-treated samples were tested for biocompatibility according to the same procedure. Proliferation of human mammary epithelial cells (HMECs) on samples revealed a dramatically improved biocompatibility of polystyrene treated by oxygen plasma. The HMECs were deposited on all samples and incubated for 1, 2 and 6 days. MTT test revealed about two times higher activity of cell enzymes after 48 h incubation. The activity for plasma-treated samples remained much higher than for untreated samples even after 6 days of incubation when the samples were already covered with a dense film of HMECs.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kasemo, B., Surf. Sci. 500, 656 (2002)CrossRef
Klee, D., Höcker, H., Adv. Polym. Sci. 149, 1 (2000)
Anselme, K., Biomaterials 21, 667 (2000)CrossRefPubMed
Pu, F.R., Williams, R.L., Markkula, T.K., Hunt, J.A., Biomaterials 23, 4705 (2002)CrossRef
Alves, C.M., Yang, Y., Carnes, D.L., Ong, J.L., Sylvia, V.L., Dean, D.D., Agrawal, C.M., Reis, R.L., Biomaterials 28, 307 (2007)CrossRefPubMed
Dowling, D.P., Miller, I.S., Ardhaoui, M., Gallagher, W.M., J. Biomater. Appl. 21, 1 (2010)
Desmet, T., Morent, R., De Geyter, N., Leys, C., Schacht, E., Dubruel, P., Biomacromolecules 10, 2351 (2009)CrossRef
Geckeler, K.E., Wacker, R., Martini, F., Hack, A., Aicher, W.K., Cell. Physiol. Biochem. 13, 155 (2003)CrossRef
Poncin-Epaillard, F., Debarnot, D., Inform. Midem 38, 252 (2008)
Wang, M.J., Chang, Y.I., Poncin-Epaillard, F., Surf. Interface Anal. 37, 348 (2005)CrossRef
Medard, N., Soutif, J.-C., Poncin-Epaillard, F., Langmuir 18, 2246 (2002)CrossRef
Coen, C., Keller, B., Groening, P., Schlapbach, L., J. Appl. Phys. 92, 5077 (2002)CrossRef
Wang, M.J., Chang, Y.I., Poncin-Epaillard, F., Langmuir 19, 8325 (2003)CrossRef
Ramires, P.A., Mirenghi, L., Romano, A.R., Palumbo, F., Nicolardi, G., J. Biomed. Mater. Res. 51, 535 (2000)3.0.CO;2-P>CrossRef
Vesel, A., Junkar, I., Cvelbar, U., Kovac, J., Mozetic, M., Surf. Interface Anal. 40, 1444 (2008)CrossRef
Jaganjac, M., Matijevic, T., Cindric, M., Cipak, A., Mrakovcic, L., Gubisch, W., Zarkovic, N., Acta Biochim. Pol. 57, 179 (2010)
Vesel, A., Surf. Coat. Technol. 205, 490 (2010)CrossRef
Oran, U., Swaraj, S., Friedrich, J.F., Unger, W.E.S., Plasma Process. Polym. 1, 141 (2004)CrossRef
Dilks, A., J. Polym. Sci. A: Polym. Chem. 19, 1319 (1981)
Joshi, R., Schulze, R.-D., Meyer-Plath, A., Friedrich, J.F., Plasma Process. Polym. 5, 695 (2008)CrossRef