Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T10:18:55.439Z Has data issue: false hasContentIssue false

Application of multilayer perceptron neural networks for predicting the permeability tensor components of thin ferrite films

Published online by Cambridge University Press:  14 November 2011

F. Djerfaf*
Affiliation:
Laboratoire des matériaux diélectriques, Université Amar Telidji-Laghouat, Algeria
D. Vincent*
Affiliation:
DIOM, Université de Lyon, 42023 Saint-Étienne, France
S. Robert
Affiliation:
DIOM, Université de Lyon, 42023 Saint-Étienne, France
A. Merzouki
Affiliation:
Laboratoire d’Instrumentation Scientifique (LIS), Département d’Électronique, Faculté des Sciences de l’Ingénieur, Université Ferhat ABBAS, 1900 Sétif, Algeria
Get access

Abstract

A novel characterization method using artificial neural networks is presented. This method allows one to determine the intrinsic permeability tensor of ferrite thin-films from S-parameters measurements. Neural networks, efficient to solve inverse problems, are used to compute the permeability tensor components μ and k. This optimization technique is used to find extremely complex functions between inputs and outputs and can be successfully applied on our magnetic thin-film characterization problem. Results of our networks are compared to a theoretical model. A great number of both simulated and measured tests have been performed on many magnetic thin-films. Neural network processing leads to a rapid and robust method for predicting the magnetic characterization of thin-films in microwave range.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hines, M., IEEE Trans. Microwave Theory Tech. 19, 442 (1971)CrossRef
Wen, C.P., IEEE Trans. Microwave Theory Tech. MTT-17, 1087 (1969)CrossRef
Bosma, H., IEEE Trans. Microwave Theory Tech. MTT-12, 61 (1964)CrossRef
Zuo, X., How, H., Somu, S., Vittoria, C., IEEE Trans. Microwave Theory Tech. 39, 3160 (2003)
Polder, D., Philos. Mag. 40, 99 (1949)CrossRef
Rado, G.T., Phys. Rev. 89, 529 (1953)CrossRef
Schloeman, E., J. Appl. Phys. 41, 204 (1970)CrossRef
Green, J., Sandy, F., IEEE Trans. Microwave Theory Tech. MTT-22, 641 (1974)CrossRef
Igarashi, M., Naito, Y., IEEE Trans. Magn. 13, 1664 (1977)CrossRef
Gelin, P., Berthou-Pichavant, K., IEEE Trans. Microwave Theory Tech. 45, 1185 (1997)CrossRef
Yamaguchi, M., Yabukami, S., Arai, K.I., IEEE Trans. Magn. 33, 3619 (1997)CrossRef
Pain, D., Ledieu, M., Acher, O., Adenot, A.L., Duverger, F., J. Appl. Phys. 85, 5151 (1999)CrossRef
Quéffélec, P., Mallgol, S., Floch, M.L., IEEE Trans. Microwave Theory Tech. 50, 3128 (2002)CrossRef
Vincent, D., Rouiller, T., Simovsky, C., Bayard, B., Noyel, G., IEEE Trans. Microwave Theory Tech. 53, 1174 (2005)CrossRef
Itoh, T., Mittra, R., IEEE Trans. Microwave Theory Tech. MTT-21, 496 (1973)CrossRef
Gilbert, T.L., Phys. Rev. 100, 1243 (1955)
Lax, B., Button, K., Microwave Ferrites and Ferrimagnetics (McGraw-Hill, New York, 1962)Google Scholar
Bayard, B., Chatelon, J.P., Le Berre, M., Joisten, H., Rousseau, J.J., Barbier, D., Sens. Actuat. A, 99, 207 (2002)Google Scholar
Gervy, B.P., Vincent, D., Leberre, M., Chatelon, J.P., Étude et caractérisation de couches magnétiques en hyperfréquence (jusqu’a 50 ghz) en fonction des paramètres de dépôt, in 10 Fmes JCMM, Limoges, France, 2008Google Scholar
Bishop, C.M., Neural Networks for Pattern Recognition (Oxford University Press, NY, 1995)Google Scholar
Patton, C.E., J. Appl. Phys. 41, 1637 (1970)CrossRef
Nazarov, A.V., Ménard, D., Green, J.J., Patton, C.E., Argentina, G.M., Van Hook, H.J., J. Appl. Phys. 94, 7227 (2003)CrossRef