Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T22:49:10.795Z Has data issue: false hasContentIssue false

Annealing effects on microstructures of HfAlO/Siwith a Ti capping layer

Published online by Cambridge University Press:  02 October 2009

L. Wan*
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
X. Gong
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
X. H. Cheng
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
H. Luo
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
Y. Huang
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
B. Tang
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
J. Shangguan
Affiliation:
Department of Physics, Wenzhou University, Wenzhou 325027, P.R. China
Get access

Abstract

We report on microstructures of HfAl2O5 gate dielectric film grown on Si substrate with a Ti capping layer treated with rapid thermal annealing process. X-ray reflectivity, atomic force microscopy and X-ray photoelectron spectroscopy are used to investigate the sample. Results show that a Six (SiO $_{2})_{(1-x)}$ layer naturally forms at the interface between the HfAlO layer and the Si substrate in the as-grown sample. With the help of the Ti capping layer on the HfAlO/Si, the annealing treatment can effectively remove the Six (SiO $_{2})_{(1-x)}$ interface layer, which enhances the capacitance of the dielectric film. On the other side, the annealing process roughens the interfaces of the sample, which brings into the increase of the leakage current. Higher temperature of the annealing treatment results in rougher interfaces. Thus, the annealing temperature should be chosen properly to improve the capacitance of the film, before the interface roughening works to increase the leakage current. In this way, the dielectric and structural properties of the samples can be optimized.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wilk, G.D., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 89, 5243 (2001) CrossRef
S.J. Lee, H.F. Luan, C.H. Lee, T.S. Jeon, W.P. Bai, Y. Senzaki, D. Roberts, D.L. Kwong, VLSI Symp. Tech. Dig. (2001), p. 133
S.J. Lee, H.F. Luan, W.P. Bai, C.H. Lee, T.S. Jeon, Y. Senzaki, D. Roberts, D.L. Kwong, Tech. Dig. Int. Electron Dev. Meet. (IEEE, San Francisco, 2000), p. 31
L. Kang, K. Onishi, Y. Jeon, B.H. Lee, C. Kand, W.J. Qi, R. Nieh, S. Gopalan, R. Choi, J.C. Lee, Tech. Dig. Int. Electron Dev. Meet. (2000), p. 35
Cho, M.-H., Roh, Y.S., Whang, C.N., Jeonh, K., Choi, H.J., Nam, S.W., Ko, D.-H., Lee, J.H., Lee, N.I., Fujihara, K., Appl. Phys. Lett. 81, 1071 (2002) CrossRef
Robertson, J., J. Appl. Phys. 28, 265 (2004)
Murto, R.W., Gardner, M.I., Brown, G.A., Zeitzoff, P.M., Huff, H.R., Solid State Technol. 46, 43 (2003)
Kim, H., Mclntyre, P.C., Chui, C.O., Saraswat, K.C., Stemmer, S., J. Appl. Phys. 96, 3467 (2004) CrossRef
Seo, K.-I., Lee, D.-I, Pianetta, P., Kim, H., Saraswat, K.C., McIntyre, P.C., Appl. Phys. Lett. 89, 142912 (2006) CrossRef
Cheng, X., Wan, L., Song, Z., Yu, Y., Shen, D., Appl. Phys. Lett. 90, 152910 (2007) CrossRef
Schlomka, J.-P., Tolan, M., Schwalowsky, L., Seeck, O.H., Stettner, J., Press, W., Phys. Rev. B 51, 2311 (1995) CrossRef
Cho, M.-H., Chang, H.S., Cho, Y.J., Moon, D.W., Min, K.-H., Sinclair, R., Kang, S.K., Ko, D.-H., Lee, J.H., Gu, J.H., Lee, N.I., Appl. Phys. Lett. 84, 571 (2004) CrossRef
G. Voronovich, Wave scattering from rough surfaces (Springer-Verlag, Berlin, 1994)
Yang, K.J., Hu, C., IEEE Trans. Electron Devices 46, 1500 (1999) CrossRef