Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T06:55:27.870Z Has data issue: false hasContentIssue false

Analysis of thermal conductance of carbon nanotubes

Published online by Cambridge University Press:  11 June 2010

Neeraj Jain*
Affiliation:
Solid State Physics Laboratory, DRDO, 110054 Delhi, India
Harsh
Affiliation:
Solid State Physics Laboratory, DRDO, 110054 Delhi, India
Get access

Abstract

Carbon nanotubes (CNTs) are being looked at as a promising material for the submicron or nanometre scale electronic and electro-mechanical devices. At this size, the thermal transport properties of the components become extremely important with regard to the proper functioning of the device. As it is difficult to accurately measure these properties in case of nano devices, predictions using modeling and simulation play an important role in the design of these devices. In this paper, we have estimated and analyzed the thermal conductance of one single-walled carbon nanotube (SWNT) depending upon its geometrical features. We have further extended the simulation to predict the thermal conductance of multi-walled carbon nanotubes (MWNTs). It was found that the SWNT depicts high thermal conductance which depends largely on its geometry and chirality and an MWNT shows very high conductance varying with tube diameter, length and number of shells.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berber, S., Kwon, Y.K., Tomanek, D., Phys. Rev. Lett. 84, 4613 (2000) CrossRef
Che, J., Cagin, T., Goddard III, W.A., Nanotechnology 11, 65 (2000) CrossRef
Iijima, S., Nature 354, 56 (1991) CrossRef
Naeemi, A., Sarvari, R., Meindl, J.D., IEEE Electron Dev. Lett. 26, 84 (2005) CrossRef
Naeemi, A., Meindl, J.D., IEEE Electron Dev. Lett. 27, 338 (2006) CrossRef
Avouris, P., Wind, S.J., Proc. IEEE 91, 1772 (2003) CrossRef
Hone, J., Whitney, M., Piskoti, C., Zettl, A., Phys. Rev. B 59, R2514 (1999) CrossRef
Hone, J., Batlogg, B., Benes, Z., Johnson, A.T., Fischer, J.E., Science 289, 1730 (2000) CrossRef
Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A., Casavant, M.J., Schmidt, J., Smalley, R.E., Appl. Phys. Lett. 77, 666 (2000) CrossRef
Hone, J., Llaguno, M.C., Biercuk, M.J., Johnson, A.T., Batlogg, B., Benes, Z., Fischer, J.E., Appl. Phys. A: Mater. Sci. Process. 74, 339 (2002) CrossRef
Yi, W., Lu, L., Zhang, D.L., Pan, Z.W., Xie, S.S., Phys. Rev. B 59, R9015 (1999) CrossRef
Jafari, M., Vaezzadeh, M., Oskoei, L.B., Int. J. Nanosci. 8, 35 (2009) CrossRef
Brown, E., Hao, L., Gallop, J.C., Macfarlane, J.C., Appl. Phys. Lett. 87, 023107 (2005) CrossRef
Rego, L.G.C., Kirczenow, G., Phys. Rev. Lett. 81, 232 (1998) CrossRef
Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L., Nature 404, 974 (2000)
Miano, G., Villone, F., IEEE Trans. Ant. Prop. 54, 2713 (2006) CrossRef
Shang, L., Liu, M., Tanachutiwat, S., Wang, W., Int. J. Nanoparticles 1, 85 (2008) CrossRef
Cao, J., Yan, X., Xiao, Y., Ding, J., Phys. Rev. B 69, 073407 (2004) CrossRef
Neeraj Jain, , Harsh, , J. Nanosc. Nanotech. 2 (2008)
Neeraj Jain, , Harsh, , Sinha, R.K., J. Adv. Mater. Res. 67, 109 (2009) CrossRef
R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)
Cheung, C.L., Kurtz, A., Park, H., Lieber, C.M., J. Phys. Chem. 106, 2429 (2002) CrossRef
S. Sato et al., Novel approach to fabricating carbon nanotube via interconnects using size controlled nanoparticles, in Int. Interconnect Tech. Conf. (IITC) 2006, pp. 230–232