Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:25:53.821Z Has data issue: false hasContentIssue false

Analysis of intrinsic localised mode for a new energy harvesting cantilever array

Published online by Cambridge University Press:  01 April 2014

Leisheng Jin
Affiliation:
College of Engineering, Swansea University, Swansea, SA2 8PP, UK
Jie Mei
Affiliation:
College of Engineering, Swansea University, Swansea, SA2 8PP, UK
Lijie Li*
Affiliation:
College of Engineering, Swansea University, Swansea, SA2 8PP, UK Wuhan University of Technology, 1040 Heping Road, Wuhan, 430063, P.R. China
*
Get access

Abstract

Electromechanical model of an energy harvester that is comprised of 64 identical pairs of cantilever beams has been built in this work. Each pair consists of a short and a long cantilever with the same width and thickness. All the beams are bi-layer structures that include a piezoelectric layer and a substrate layer, which are coupled by the overhang part. The model is focused on analyzing the nonlinear dynamic behavior of the device, specifically when it is operated at intrinsic localized mode (ILM). The electrical charge generated on the surface of the piezoelectric layer has been derived using the beam theory and the piezoelectric equations. It has been found from numerical simulations that spatiotemporal chaos, in particular ILMs can arise during abrupt frequency changes of the external driving source, which could potentially be used to achieve high/concentrated energy output.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sievers, A.J., Takeno, S., Phys. Rev. Lett. 61, 970 (1988)CrossRef
Maniadis, P., Flach, S., Europhys. Lett. 74, 452 (2006)CrossRef
Sato, M., Hubbard, B.E., Sievers, A.J., Ilic, B., Czaplewski, D.A., Craighead, H.G., Phys. Rev. Lett. 90, 044102 (2003)CrossRef
Kenig, E., Malomed, A., Cross, M.C., Lifshitz, R., Phys. Rev. E 80, 046202 (2009)CrossRef
Buks, E., Roukes, M.L., J. Microelectromech. Syst. 11, 802 (2002)CrossRef
Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y., Phys. Rev. Lett. 84, 745 (2000)CrossRef
Morandotti, R., Peschel, U., Aitchison, J.S., Eisenberg, H.S., Silberberg, Y., Phys. Rev. Lett. 83, 2726 (1999)CrossRef
McGurn, A.R., Chaos 13, 754 (2003)CrossRef
Trombettoni, A., Smerzi, A., Phys. Rev. Lett. 86, 2325 (2001)CrossRef
Chen, Q., Huang, L., Lai, Y.C., Dietc, D., Chaos 19, 013127 (2009)CrossRefPubMed
Liu, J.Q., Fang, H.B., Xu, Z.Y., Mao, X.H., Shen, X.C., Chen, D., Liao, H., Cai, C., Microelectronics 39, 802 (2008)CrossRef
Chew, Z., Li, L., Sens. Actuators A 162, 82 (2010)CrossRef
Gammaitoni, L., Neri, I., Vocca, H., Appl. Phys. Lett. 94, 164102 (2009)CrossRef
Dauxois, T., Peyrard, M., Willis, C.R., Phys. Rev. E 48, 4768 (1993)CrossRef
Gere, J.M., Timoshenko, S.P., Mechanics of Materials (PWS Publishing, Boston, USA, 1997), Chap. 5 pp. 303308Google Scholar
Weinberg, M.S., J. Microelectromech. Syst. 8, 529 (1999)CrossRef
Chen, Q., Lai, Y.C., Dietz, D., Chaos 20, 043139 (2001)CrossRefPubMed
Devoe, D.L., Pisano, A.P., J. Microelectromech. Syst. 6, 266 (1997)CrossRef
Sato, M., Hubbard, B.E., Sievers, A.J., Rev. Mod. Phys. 78, 137 (2006)CrossRef
Liu, Z., Mei, J., Li, L., Phys. Lett. A 376, 1767 (2012)CrossRef
Daumont, I., Dauxoisz, T., Peyrard, M., Nonlinearity 10, 617 (1997)CrossRef
Guckenheimer, J., Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1990)Google Scholar
Shlizerman, E., Rom-Kedar, V., Phys. Rev. Lett. 96, 024104 (2006)CrossRef
Chen, Q., Huang, L., Lai, Y.C., Appl. Phys. Lett. 92, 241914 (2008)CrossRef