Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T16:09:28.305Z Has data issue: false hasContentIssue false

An optimum PML for scattering problems in the time domain*

Published online by Cambridge University Press:  06 November 2013

Axel Modave*
Affiliation:
Department of Electrical Engineering and Computer Science (Institut Montéfiore), Université de Liège, Grande Traverse 10, 4000 Liège, Belgium
Abelin Kameni
Affiliation:
Laboratoire de Génie Électrique de Paris, UMR 8507 CNRS, Supelec, Universities Paris VI and Paris XI, 11 rue Joliot Curie, 91192 Gif-sur-Yvette, France
Jonathan Lambrechts
Affiliation:
Institute of Mechanics, Materials and Civil Engineering (iMMC), Université Catholique de Louvain-la-Neuve, avenue George Lemaître 4-6, 1348 Louvain-la-Neuve, Belgium
Eric Delhez
Affiliation:
Department of Aerospace and Mechanical Engineering, Université de Liège, Grande Traverse 12, 4000 Liège, Belgium
Lionel Pichon
Affiliation:
Laboratoire de Génie Électrique de Paris, UMR 8507 CNRS, Supelec, Universities Paris VI and Paris XI, 11 rue Joliot Curie, 91192 Gif-sur-Yvette, France
Christophe Geuzaine
Affiliation:
Department of Electrical Engineering and Computer Science (Institut Montéfiore), Université de Liège, Grande Traverse 10, 4000 Liège, Belgium
*
Get access

Abstract

In electromagnetic compatibility, scattering problems are defined in an infinite spatial domain, while numerical techniques such as finite element methods require a computational domain that is bounded. The perfectly matched layer (PML) is widely used to simulate the truncation of the computational domain. However, its performance depends critically on an absorption function. This function is generally tuned by using case-dependent optimization procedures. In this paper, we will present some efficient functions that overcome any tuning. They will be compared using a realistic scattering benchmark solved with the Discontinuous Galerkin method.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “Numelec 2012”, Edited by Adel Razek.

References

Bérenger, J.P., J. Comput. Phys. 114, 185 (1994)CrossRef
Taflove, A., Hagness, S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)Google Scholar
Collino, F., Monk, P.B., SIAM J. Sci. Comput. 19, 2061 (1998)CrossRef
Cohen, G., Ferrieres, X., Pernet, S., J. Comput. Phys. 217, 340 (2006)CrossRef
Fezoui, L., Lanteri, S., Lohreng, S., Piperno, S., Math. Model. Numer. Anal. 39, 1149 (2005)CrossRef
Hesthaven, J.S., Warburton, T., J. Comput. Phys. 181, 186 (2002)CrossRef
Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R., SIAM J. Sci. Comput. 30, 312 (2007)CrossRef
Collino, F., Monk, P.B., Comput. Methods Appl. Mech. Eng. 164, 157 (1998)CrossRef
Modave, A., Deleersnijder, E., Delhez, E.J.M., Ocean Dyn. 60, 65 (2010)CrossRef
Bérenger, J.P., Perfectly Matched, Layer (PML) for Computational Electromagnetics (Morgan & Claypool, 2007)Google Scholar
Gedney, S., in Computational Electrodynamics: The Finite- Difference Time-Domain Method, edited by Taflove, A. (Artech House, 2005), pp. 273328 Google Scholar
Modave, A., Delhez, E.J.M., Geuzaine, C., in Proceedings of the 10th International Conference on Mathematical and Numerical Aspects of Waves Propagation, Vancouver, Canada, 2011, pp. 591594
Ojeda, X., Pichon, L., J. Electromagn. Waves Appl. 19, 1375 (2005)CrossRef